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Abstract
Strong stability preserving (SSP) high order time discretizations were developed to

ensure nonlinear stability properties necessary in the numerical solution of hyperbolic
partial differential equations with discontinuous solutions. SSP methods preserve the
strong stability properties – in any norm, seminorm or convex functional – of the spatial
discretization coupled with first order Euler time stepping. This paper describes the
development of SSP methods and the connections between the timestep restrictions for
strong stability preservation and contractivity. Numerical examples demonstrate that
common linearly stable but not strong stability preserving time discretizations may lead
to violation of important boundedness properties, whereas SSP methods guarantee the
desired properties provided only that these properties are satisfied with forward Euler
timestepping. We review optimal explicit and implicit SSP Runge-Kutta and multistep
methods, for linear and nonlinear problems. We also discuss the SSP properties of
spectral deferred correction methods.

Key Words: Strong stability preserving, Runge-Kutta methods, multistep methods, spec-
tral deferred correction methods, high order accuracy, time discretization
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1 Overview

1.1 Introduction to SSP methods

Linear stability theory is often used to prove convergence of numerical approximations to the
solutions of partial differential equations (PDEs). Given a consistent linear differential equa-
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tion and linear numerical method, linear stability is necessary and sufficient for convergence
([84] Theorem 1.5.1). Even for nonlinear PDEs, if a numerical method is consistent and its
linearization is L2 stable and adequately dissipative, then for sufficiently smooth problems
the nonlinear approximation is convergent [83]. However, when dealing with discontinuous
solutions of hyperbolic PDEs, linear stability theory no longer guarantees convergence. For
example, the linearly stable second order Lax-Wendroff scheme for the nonlinear Burgers
equation is L2 nonlinearly unstable near stagnation points [63]. In this case, some kind of
nonlinear stability is necessary in order to guarantee convergence.

Discontinuous solutions often arise in the solution of hyperbolic PDEs, such as hyperbolic
conservation laws:

Ut + f(U)x = 0. (1.1)

In the method of lines approach, one first applies some spatial discretization, denoted −F (u),
to approximate the spatial derivative f(U)x, yielding a semi-discrete system of ODEs

ut = F (u), (1.2)

where u is a vector of approximations to U , uj ≈ U(xj). (We will later use the notation
un to be the fully discrete vector un

j ≈ U(tn, xj).) The spatial discretization F (u) is typi-
cally a carefully chosen nonlinearly stable finite difference or finite element approximation.
For hyperbolic PDEs, the relevant nonlinear stability property typically takes the form of
total variation diminishing (TVD), total variation bounded (TVB), or some non-oscillatory
requirement. These requirements may be desired even for a linear problem, where they are
not necessarily required for convergence. While linear stability can often be studied directly
even for complex time discretizations, nonlinear stability is more difficult to examine. Con-
sequently, a tremendous amount of effort has been placed on the development of high order
spatial discretizations which, when coupled with the forward Euler time stepping method,
have the desired nonlinear stability properties for approximating discontinuous solutions of
hyperbolic PDEs (see, e.g. [32, 67, 86, 13, 53, 87, 59]). However, for actual computation,
higher order time discretizations are usually needed. There is no guarantee that a spatial
discretization that is strongly stable in some desired norm or semi-norm (e.g., L∞, or TV ) for
a nonlinear problem under forward Euler integration will possess the same nonlinear stability
property when coupled with a linearly stable higher order time discretization. High order
strong stability preserving time discretization methods guarantee that the nonlinear stability
properties satisfied by the spatial discretization when coupled with forward Euler integra-
tion will be preserved when the same spatial discretization is coupled with these higher order
methods. In Section 1.2, we show examples in which this condition is needed.

The idea behind strong stability preserving methods is to begin with a method of lines
semi-discretization that is strongly stable in a certain norm, semi-norm, or convex functional
under forward Euler time stepping, when the timestep ∆t is suitably restricted, and then try
to find a higher order time discretization that maintains strong stability for the same norm,
perhaps under a different timestep restriction. In other words, given a semi-discretization of
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the form (1.2) and convex functional ‖ · ‖, it is assumed that there exists a value ∆tFE such
that

‖un + ∆tF (un)‖ ≤ ‖un‖ for 0 ≤ ∆t ≤ ∆tFE. (1.3)

A s-step numerical method for (1.2) computes the next solution value u(n+1) from previous
values un−s+1, . . . , un. We say that the method is strong stability preserving (SSP) with SSP
coefficient c if (in the solution of (1.2)) it holds that

‖un+1‖ ≤ max
{
‖un‖, ‖un−1‖, . . . , ‖un−s+1‖

}
. (1.4)

whenever (1.3) holds and the timestep satisfies

∆t ≤ c∆tFE. (1.5)

In the case of a one-step method (1.4) reduces to

‖un+1‖ ≤ ‖un‖. (1.6)

The class of high order SSP time discretization methods was first developed in [78] and
[76] and called TVD (total variation diminishing) time discretizations. This class of methods
was further studied in [29, 30, 74, 77, 81, 82, 27, 41, 75, 39, 72, 80, 45, 47, 60]. SSP methods
preserve the nonlinear stability properties of forward Euler in any norm or semi-norm. In fact,
since the stability arguments are based on convex decompositions of high-order methods in
terms of the first-order Euler method, any convex function (such as the cell entropy stability
property of high order schemes studied in [68, 66]) will be preserved by SSP high-order time
discretizations.

When the timestep is limited by a linear stability requirement, or even by a nonlinear
stability requirement involving an inner-product norm, there exist some well-known classes
of implicit methods which allow the use of arbitrarily large timesteps. One might then hope
for implicit methods that are unconditionally stable in the SSP sense. Indeed, if the spatial
discretization is strongly stable in some norm under forward Euler time integration, then the
fully discrete solution will also be strongly stable, in the same norm, for the implicit Euler
method, without any timestep restriction [41, 33]. However, for both Runge-Kutta and linear
multistep methods (and in fact, for any general linear method) of order greater than one,
strong stability preservation is guaranteed only under some finite timestep [79]. Furthermore,
numerical searches indicate that the timestep restrictions for implicit SSP methods are not
dramatically larger than those for explicit methods [57, 24, 47].

The search for optimal SSP methods has been aided by the discovery of connections be-
tween SSP theory and contractivity theory [23, 22, 33, 34]. This discovery has led to the
development of new optimal and efficient SSP methods [24, 47, 45].

SSP methods are widely used in the solution of hyperbolic PDEs. They have been employed
in a variety of application areas, including compressible flow [91], incompressible flow [70],
viscous flow [85], two-phase flow [6, 3], relativistic flow [16, 1, 95], cosmological hydrodynam-
ics [19], magnetohydrodynamics [2], radiation hydrodynamics [64], two-species plasma flow
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[54], atmospheric transport [10], large-eddy simulation [69], Maxwell’s equations [11], semi-
conductor devices [7], lithotripsy [88], geometrical optics [12], Schrodinger equations [9, 43],
and combined with a range of spatial discretizations, including discontinuous Galerkin meth-
ods [11], level set methods [71, 6, 18, 9, 12, 43], ENO methods [6, 16, 1], WENO methods
[3, 7, 88, 19, 54, 2, 95, 69], spectral finite volume methods [85, 10], and spectral difference
methods [91, 92]. This list of references is inevitably only a sample. Note that all the refer-
ences above involve the use of SSP Runge-Kutta methods; we are not aware of extensive use
of SSP multistep methods in applications.

In this paper, we give numerical examples that demonstrate the practical relevance of
SSP methods, describe the equivalence between the Shu-Osher SSP theory and contractivity
theory, and collect the main results and the most useful and efficient SSP methods. The
paper is organized as follows: The need for the SSP condition, classical SSP theory and
its connections to contractivity will be described in Section 1, together with some related
stability concepts. Section 2 describes order barriers and timestep restrictions arising from
contractivity theory for Runge-Kutta, linear multistep, and general linear methods. The best
known methods in terms of computational efficiency for both explicit and implicit Runge-
Kutta and multistep methods are presented in Sections 3 and 4, respectively. In Section 5
we address the SSP property as applied to the spectral deferred correction methods and their
connection to Runge-Kutta methods. Our conclusions appear in Section 6.

1.2 The need for SSP methods

When numerically solving an equation of the form

Ut + f(U)x = 0

by the method of lines, it is important to consider the properties of the spatial discretization
combined with the time discretization. If the problem is smooth, it is sufficient to linearize
the problem and analyze the L2 stability properties of the resulting discretization. However,
if the solution is nonsmooth, stability in the L2 norm is not sufficient. This is because for
PDEs with discontinuous solutions, the presence of oscillations prevents the approximation
from converging uniformly. To ensure that the method does not allow oscillations to form, we
require stability in the maximum norm or in the TV semi-norm.

To prove stability of modern numerical methods for nonlinear hyperbolic problems with
discontinuous solution, one must typically analyze a highly nonlinear, complex spatial dis-
cretization combined with a high order time discretization. While this may be done numeri-
cally for several test cases of interest (see [49], for instance), performing a true general analysis
of the stability properties of such a pair may be untenable. This is particularly the case if
the stability bound of interest involves the maximum norm, or the total variation semi-norm
defined by

‖u‖TV =
N∑

j=0

|uj+1 − uj|.
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SSP time-disretizations were created to deal with problems that have these particularly chal-
lenging features (i.e., nonlinear problems, and methods, with discontinuous solutions) – for
which linear stability theory is not sufficient – and which require stability in norms or semi-
norms which are not generated by an inner product. SSP methods have proven particularly
useful for integrating discontinuous Galerkin semi-discretizations, for which proofs of the TVD
property are generated for each limiter used, when the method is coupled with the first or-
der forward Euler time-discretization. It is untenable to repeat these proofs for each time-
discretization used. The SSP mechanism allows these proofs to be immediately extended to
all SSP higher order time-discretizations.

The SSP property is a very strong requirement that guarantees strong stability (mono-
tonicity) in arbitrary convex functionals, for arbitrary starting values and arbitrary nonlinear,
nonautonomous equations, as long as forward Euler stability is satisfied. The result of this
strong stability requirement is a rather stringent restriction on the timestep. In many cases, a
more relaxed timestep restriction may suffice; for example, if instead of considering arbitrary
convex functionals we require monotonicity in some inner-product norm. The relevant prop-
erty in this case is referred to as algebraic stability for Runge-Kutta methods and as G-stability
for multistep methods, and methods of higher than first order exist that are unconditionally
stability preserving in this sense. If we require strong stability preservation only when integrat-
ing linear autonomous equations (i.e., a ’linear SSP’ property), the timestep condition is also
more relaxed, as we will see below in Section 1.4.1. When dealing with smooth, well-resolved
problems, a weaker condition may guarantee monotonicity; conditions for the preservation of
positivity for certain smooth solutions have been investigated by Horvath [36, 37]. Finally, if
we are willing to consider special starting procedures for linear multistep methods, the SSP
conditions may be relaxed somewhat (see Section 4).

When none of these simplifications apply, as is the case for nonlinear PDEs with discon-
tinuous solution, we turn to the SSP property to guarantee strong stability in the desired
norm. In the following we consider some examples that demonstrate the need for SSP time
discretizations in the solution of hyperbolic PDEs with discontinuities.

In [55] it is shown that when a second order Lax-Wendroff scheme – which is strongly
stable in the L2 norm – is applied to the linear advection equation

Ut + aUx = 0 (1.7)

with step-function initial condition, there will be an overshoot (for a > 0) or undershoot (for
a < 0) near the discontinuity. In fact, it is shown that the Gibbs phenomenon will affect
any finite difference scheme of second (or higher) order accuracy applied to this problem. In
other words, an overshoot or undershoot that prevents uniform convergence will occur for
all finite difference methods of second order, even those which are strongly stable in the L2

norm, for linear problems. Clearly, L2 stability is not the relevant property when we desire
well-behaved numerical solutions of hyperbolic PDEs with discontinuous solutions. However,
if we can prevent oscillations from forming by requiring stability in the maximum norm or the
TV semi-norm, we can obtain uniform convergence.

Even when the spatial discretization is total variation diminishing (TVD) when coupled
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with forward Euler integration, this is not sufficient to guarantee that it will be TVD when
combined with a higher order time-discretization. Consider Burgers’ equation

Ut +

(
1

2
U2

)

x

= 0, x ∈ [0, 2) (1.8)

with initial condition

u(0, x) =
1

2
− 1

4
sin(πx) (1.9)

and periodic boundary conditions. The solution is right-travelling and over time steepens into
a shock. We discretize using the conservative upwind approximation

−f(U)x ≈ F (u) = − 1

∆x
(f(ui) − f(ui−1)) (1.10)

where f(ui) = 1
2
u2

i . Using Harten’s lemma [32] and the fact that for this problem f ′(u) > 0
we conclude that this method is TVD for ∆t ≤ ∆x when coupled with forward Euler. Using
this fact we can conclude that if we integrate, instead, using backward Euler, the solution will
be TVD for all values of ∆t. Instead, let us use the (second-order) implicit trapezoidal rule

un+1 = un +
1

2
∆t
(
F (un+1) + F (un)

)
(1.11)

which is A-stable, like the backward Euler method. Hence the full discretization is absolutely
stable under any timestep. Nevertheless, we find that whenever ∆t > 2∆x, oscillations appear
(see Figure 1.1, left). This is also the case when we use the implicit midpoint rule

u(1) = un +
∆t

2
F (u(1)) (1.12)

un+1 = u(1) +
∆t

2
F (u(1))

which is A-stable, L-stable, and B-stable, but clearly not SSP for ∆t > 2∆x (see Figure 1.1,
right). Although for many problems implicit methods can be used to avoid stability-related
timestep restrictions, this is not the case when the SSP condition is of interest.

Below we will see that the conditions required for an SSP time integrator are weaker if only
linear problems are considered. For instance, while explicit Runge-Kutta methods that are
SSP for nonlinear problems have order of accuracy at most four, explicit SSP Runge-Kutta
methods for linear problems can easily be constructed with any order of accuracy. Although
one might hope that the timestep restriction associated with the linear SSP property would
suffice to give reasonably good behavior in the nonlinear case, experience shows this is not
true. Consider a fifth order explicit Runge-Kutta method with six stages, due to Butcher [5,
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Figure 1.1: Solution of Burgers’ equation (1.8) at t = 2.0 using upwind differencing with 256
spatial points and the implicit trapezoidal rule (ITR) (1.11) (left) and implicit midpoint rule
(IMR) (1.12) (right) with ∆t = 8∆x = 8∆tFE. The solution appears smooth until the shock
develops, then an oscillation develops at the trailing edge of the shock.

p. 174]. The Butcher array of the method is
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It can be shown this method has SSP coefficient c = 0. However, for linear problems, we can
take advantage of the linearity property to rearrange this method into the SSP form

u(1) = un + ∆t
9

16
F (un)

u(i+1) = u(i) + ∆t
9

16
F (u(i)) (1 ≤ i ≤ 5)

un+1 =
84449

312
un + +

313328

5 · 311
u(1) +

584

38
u(2) +

536

38
u(3) +

2

35
u(4) +

1

6!

(
16

9

)7

u(6),
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which is clearly SSP for linear problems with coefficient R = 16/9 ≈ 1.78. (Note that when
we implement the method in this form for a nonlinear problem it is still SSP with the same
coefficient but it is no longer fifth order.) Indeed, this bound is seen in practice – if we
apply the method to a first order upwind semi-discretization of the advection equation (1.7),
the resulting solution is TVD for ∆t < 1.78∆x. However, the linear SSP property does not
carry over to the nonlinear case. Very different behavior results when applying the method
(1.13) to solve Burgers’ equation (1.8) with a discontinuous initial condition. The spatial
derivative is discretized using a second order TVD flux-differencing method with the superbee
slope limiter. This spatial discretization is TVD when coupled with forward Euler for a
timestep ∆t ≤ 1

2
∆x. If we look at the linear SSP condition, we may expect that a timestep

of ∆t ≤ 8
9
∆x will preserve the TVD property. However, we find that this method leads to

spurious oscillations already for ∆t = 0.46∆x. In other words, the method fails to be TVD for
even smaller timesteps than for Euler’s method, whereas a purely linear SSP analysis would
predict just the opposite.

The challenge of dealing with both a nonlinear method or problem and a difficult stability
property arises with the weighted essentially non-oscillatory (WENO) method [59, 42]. The
WENO method is an extension of the essentially non-oscillatory (ENO) method, which chooses
the smoothest finite difference stencil to evaluate the derivative on. The WENO scheme uses
a weighted combination of all the stencils considered, where the weights approach the center-
upwind difference weights in smooth regions and approach the ENO weights in regions near
the discontinuities. The second order ENO method satisfies the TVD, hence non-oscillatory,
condition when coupled with forward Euler. Even though we could not expect the same TVD
property for higher order ENO methods, since TVD schemes can be at most second order
accurate in space [67], we do expect similar essentially non-oscillatory performance, even
though this is not rigorously enforced. We expect that since WENO weights should reduce to
ENO weights near the discontinuity, WENO should behave like ENO in the region of a shock.
However, there is no theory to guarantee this behavior. Despite the lack of theoretical results,
in practice we observe advantages to the use of SSP methods for WENO methods on linear
and nonlinear problems.

Let’s consider, again, the linear advection equation (1.7), now with square-wave initial
condition:

U(x, 0) =





0 −1 ≤ x ≤ −0.5
1 −0.5 < x < 0.5
0 0.5 ≤ x ≤ 1.0

(1.14)

and periodic boundary conditions. In our experiments, we use the fifth order WENO scheme
of [42], denoted by WENO5, with ε = 10−29 and the time discretizations SSPRK (3,3) (in 3.2),
SSPRK (10,4) (in 3.6), the SSPRK (5,3) from [81] (see (3.3)) and the non-SSP RK method
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Method σL2 σL2/m σTVD σTVD/m
SSPRK (3,3) 1.43 0.477 0.78 0.260
NSSPRK (5,3) 2.56 0.512 1.01 0.202
SSPRK (5,3) 2.04 0.408 1.31 0.262
SSPRK (10,4) 3.08 0.308 3.07 0.307

Table 1.1: Largest stable CFL numbers and relative efficiencies for smooth and discontinuous
solutions.

NSSPRK (5,3):

u(1) = un +
1

7
∆tF (un)

u(2) = un +
3

16
∆tF (u(1))

u(3) = un +
1

3
∆tF (u(2))

u(4) = un +
2

3
∆tF (u(3))

un+1 = u(5) = un +
1

4
∆tF (un) +

3

4
∆tF (u(4))

which was used in [90] and is L2 linearly stable in combination with the linearized version of
WENO5, obtained by setting all weights equal to unity. Figure 1.2 shows the solution obtained
with NSSPRK (5,3) at time t = 0.2 and using the timestep ∆t = 1.85∆x, as suggested in [90].
We observe that at these times, oscillations are present. However, if we instead apply the
SSPRK (5,3) method, no significant oscillations form. To study this example more carefully,
we look at the total variation norm of the numerical solution. We are interested in the largest
CFL number σTVD such that for ∆t ≤ σTVD∆x, the total variation of the solution does not
increase by more than 10−13 at each timestep. For comparison, we also calculated the linear L2

stability timestep restriction ∆t ≤ σL2∆x of these discretizations by computing the spectrum
of the underlying (fixed-coefficient) fifth order finite difference method and determining the
largest timestep such that this spectrum lies within the region of absolute stability for a given
method. This timestep restriction will avoid oscillations when integrating sufficiently smooth
solutions. In Table 1.1 we present a comparison of these CFL numbers. We also compare
the relative efficiency of the methods by dividing the stable CFL number by the number of
function evaluations (i.e. stages, m) required for each method. We observe that in each
case the timestep restriction for L2 linear stability is larger than that required for the TVD
property, and that the non-SSP method is less efficient than the SSP methods.

The last example demonstrates that SSP methods may reduce the computational cost
when the timestep is limited by stability considerations. Next, let us compare results using
different methods while fixing the computational cost. In this example we return to Burgers’
equation (1.8) with initial condition (1.9), and WENO5 spatial discretization with ε = 10−29

(see [42] for the definition of ε). We compare results obtained with SSPRK (3,3), SSPRK
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Figure 1.2: Convection of a square-wave using a non-SSP method NSSPRK (5,3)(left) or
SSPRK (5,3) (right) with ∆t = 1.85∆x at time t = 0.2.

(5,3) and NSSPRK (5,3). We use 200 points in space, so that ∆x = 0.01 and we choose
∆t = ∆x

.75
for SSPRK (3,3) and ∆t = 5

3
∆x
.75

for the five stage methods (so that total number
of function evaluations is the same). The solutions obtained with the SSP methods do not
exhibit oscillations while the solution from the non-SSP method does, as seen in Figure 1.3.

For SSP Runge-Kutta methods, it is desirable that the internal stages also be strongly
stable. This means requiring not only that ||un+1|| ≤ ||un||, but also that each stage u(i)

for i = 1, ...,m satisfy ||u(i)|| ≤ ||u(i−1)||. Since the SSP argument relies on convexity, which
is satisfied at the intermediate stages as well, SSP Runge-Kutta methods have intermediate
stage SSP properties. The SSP guarantee of provable stability even for the intermediate stages
is given with no additional cost.

This condition is frequently necessary in the approximate solution of hyperbolic PDEs.
For example, in the numerical solution of the Euler equations of gas dynamics, it is important
that negative pressure or density values be avoided even in the intermediate stages. Violations
of these bounds are more than theoretically problematic, as they lead to non-physical states
and typically to failure of the solution algorithm. Consider the Riemann problem for the Euler
equations 


ρ
ρu
E




t

+




ρu
P + ρu2

u(P + E)




x

= 0

where ρ is the density, ρu is the momentum, E is the energy, and P = (γ − 1)(E − 1
2
ρu2) is

the pressure. We take γ = 1.4, initial density and pressure equal to unity everywhere, and
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Figure 1.3: Burgers’ equation with WENO5 for different time stepping methods.

Method σ σ/m
SSPRK (3,3) 0.77 0.257
NSSPRK (5,3) 0.50 0.100
RK (4,4) 0.77 0.193
SSPRK (10,4) 2.70 0.270

Table 1.2: Largest positivity-preserving CFL number for the near-vacuum Riemann problem.

initial velocity:

v(x, 0) =

{
−3.1 (x < 0.5)

3.1 (x > 0.5)

This leads to a near-vacuum state at x = 0 at later times. The solution is computed on the
interval 0 ≤ x ≤ 1 using 200 grid points. Again fifth-order WENO (without characteristic
decomposition) [42] is used for the semi-discretization. We determine the largest CFL number
σ for which the density and pressure values remain positive at all Runge-Kutta stages. These
values are listed in Table 1.2, and we see that the SSP methods allow a more efficient time-step
than the NSSPRK (5,3) and classical four-stage fourth order method (denoted by RK (4,4)).
Clearly, the SSP methods are the most efficient for this purpose.

1.3 The Shu-Osher formulation

Explicit SSP methods were first introduced by Shu and Osher in the following manner. First,
an explicit Runge-Kutta method is written in the form [78],

u(0) = un,

u(i) =

i−1∑

k=0

(
αi,ku

(k) + ∆tβi,kF (u(k))
)
. (1.15)

un+1 = u(m).
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The form (1.15), referred to as the Shu-Osher form, is different from the classical representation
(see (1.20) below), but is more convenient for SSP analysis. The SSP property for explicit
multistep methods can be analyzed based on the traditional form [76],

un+1 =

m∑

i=1

(
αiu

n+1−i + ∆tβiF (un+1−i)
)
. (1.16)

Consistency requires that
∑i−1

k=0 αi,k = 1 for Runge-Kutta methods and
∑m

k=1 αi = 1 for
multistep methods.

If all the coefficients are non-negative, the forms (1.15) and (1.16) can both easily be
manipulated into convex combinations of forward Euler steps, with a modified timestep. This
observation motivates the following theorem:

Theorem 1.1. ([78] Section 2). If the forward Euler method applied to (1.2) is strongly stable
under the timestep restriction ∆t ≤ ∆tFE, i.e. (1.3) holds, and if αi,k, βi,k ≥ 0 (αi, βi ≥ 0 for
the multistep method), then the solution obtained by the Runge-Kutta method (1.15) (or the
multistep method (1.16)) satisfies the strong stability bound (1.6) (or (1.4)) under the timestep
restriction

∆t ≤ c(α,β)∆tFE, (1.17)

where c(α,β) = mini,k
αi,k

βi,k
(or c(α,β) = mini

αi

βi
for the multistep method).

Proof. Each stage of the Runge-Kutta method (1.15) can be re-written as a convex combina-
tion of forward Euler steps:

‖u(i)‖ = ‖
i−1∑

k=0

(
αi,ku

(k) + ∆tβi,kL(u(k))
)
‖

≤
i−1∑

k=0

‖
(
αi,ku

(k) + ∆tβi,kL(u(k))
)
‖

=
i−1∑

k=0

αi,k

∥∥∥∥u(k) + ∆t
βi,k

αi,k
L(u(k))

∥∥∥∥ .

Now, since each ‖u(k)+∆t
βi,k

αi,k
L(u(k))‖ ≤ ‖u(k)‖ as long as ∆t ≤ βi,k

αi,k
∆tFE, and since

∑i−1
k=0 αi,k =

1 by consistency, we have ‖un+1‖ ≤ ‖un‖ as long as ∆t ≤ βi,k

αi,k
∆tFE for all i and k.

Similarly, this result is obtained for multistep methods by using the observation that the
explicit multistep method can be written as a convex combination of forward Euler steps,

un+1 =
m∑

i=1

(
αiu

n+1−i + ∆tβiL(un+1−i)
)

(1.18)

=
m∑

i=1

αi

(
un+1−i + ∆t

βi

αi
L(un+1−i)

)
, (1.19)

with
∑m

k=1 αi = 1.
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Note that Theorem 1.1 gives sufficient conditions for strong stability preservation, but
makes no claims about their necessity. This will be addressed in the next section. It is
interesting that the stable timestep is the product of only two factors, the forward Euler
timestep (∆tFE), which depends on the spatial discretization alone, and the coefficient c(α,β),
which depends only on the time discretization. In the literature, c has been referred to as
a CFL coefficient. However, the CFL condition prescribes a relation between the time step
and the spatial grid size, whereas the SSP coefficient describes the ratio of the strong stability
preserving timestep to the strongly stable forward Euler time step.

For multistep methods, the form (1.16) is unique. For Runge-Kutta methods, a given
method can be written in many ways in the Shu-Osher form (1.15). In Theorem 1.1, the
coefficient c(α,β) depends on the particular Shu-Osher representation chosen. Hence it is
helpful to consider the Butcher form

u(i) = un + ∆t
m∑

j=1

aijL(u(j)) (1 ≤ i ≤ m) (1.20)

un+1 = un + ∆t
m∑

j=1

bjL(u(j)).

Every irreducible Runge-Kutta method has a unique Butcher representation. The notation
A = (aij) and b = (bj), allows any Runge-Kutta method given in the Butcher form to be
referred to as (A, b). The Butcher form allows for fully implicit methods; inclusion of implicit
terms in the Shu-Osher form led to an extension that we will refer to as the modified Shu-Osher
form. This was first defined in [22, 34], and is given by

u(i) =

(
1 −

m∑

j=1

λij

)
un +

m∑

j=1

(
λiju

(j) + ∆tµijL(u(j))
)

(1 ≤ i ≤ m) (1.21)

un+1 =

(
1 −

m∑

j=1

λm+1,j

)
un +

m∑

j=1

(
λm+1,ju

(j) + ∆tµm+1,jL(u(j))
)
.

We will use the term SSP coefficient and the notation c(A, b) (or just c) to refer to the
maximal value of c(α,β) over all Shu-Osher representations of a given Runge-Kutta method,
and we will see in the next section that there exists a straightforward way to determine this
value.

There is a simple relation between the modified Shu-Osher representation and the Butcher
representation [23]. First define

L =

(
L0

L1

)

where L0 = (λij) for 1 ≤ i, j ≤ m, and L1 = (λm+1,j) for 1 ≤ j ≤ m, and

M =

(
M0

M1

)
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where M0 = (µij) for 1 ≤ i, j ≤ m, and M1 = (µm+1,j) for 1 ≤ j ≤ m. The relation between
the Shu-Osher representation and the Butcher array is

M0 = A− L0A M1 = bT − L1A

(where I − L0 is invertible).

1.3.1 Negative Coefficients

Up to now, we have considered only methods for which all the βi,ks are nonnegative. However,
the SSP property can be guaranteed also in the case where some of the βi,ks are negative,
provided that we modify the spatial discretization for these instances. When βi,k is negative,
βi,kF (u(k)) is replaced by βi,kF̃ (u(k)), where F̃ approximates the same spatial derivative(s) as
F , but the strong stability property ‖un+1‖ ≤ ‖un‖ holds for the first order Euler scheme,
solved backward in time, i.e.,

un+1 = un − ∆tF̃(un) (1.22)

This can be achieved, for hyperbolic conservation laws, by solving the negative in time version
of (1.1),

Ut − f(U)x = 0.

Numerically, the only difference is the change of the upwind direction. Clearly, F̃ can be
computed with the same cost as that of computing F . Thus, if αi,k ≥ 0, all the intermediate
stages u(i) in (1.15) are simply convex combinations of backward in time Euler and forward

Euler operators, with ∆t replaced by
|βi,k |
αi,k

∆t. Therefore, any strong stability bound satisfied

by the backward in time and forward in time Euler methods will be preserved by the RK
method.

It would seem that if both F (u(k)) and F̃ (u(k)) must be computed for the same k, the
computational cost as well as storage requirement for this k is doubled. For this reason,
negative βi,k were avoided whenever possible in [29, 30, 27, 74, 82]. However, since, as shown
in Proposition 3.3 of [29] and Theorem 4.1 in [74], it is not always possible to avoid negative
βi,k, recent studies (e.g. [75, 72, 28]) have considered efficient ways of implementing negative
βi,k. Firstly, inclusion of negative βi,k, even when not absolutely necessary, may raise the
SSP coefficient enough to compensate for the additional computational cost incurred by F̃ .
Secondly, since F̃ is, numerically, the downwind version of F , it is sometimes possible to
compute both F and F̃ without doubling the computational cost [28]. Finally, if F and F̃ do
not appear for the same k, then neither the computational cost nor the storage requirement
is increased.

In practice, these methods are rarely used, and so in this review we deal primarily with
methods with nonnegative βi,ks in this paper. For more details on SSP methods with negative
coefficients, see [21, 30, 26, 28, 35, 75, 72, 78, 76, 80].
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1.4 Contractivity and absolute monotonicity

So far we have focused on the monotonicity property (1.4), which bounds the growth of solu-
tions. Classical stability analysis focuses on bounding the growth of differences of solutions,
i.e.

||un+1 − vn+1|| ≤ ||un − vn||. (1.23)

Taking v to represent a perturbed version of u due to numerical error, we see that property
(1.23) (referred to as contractivity) implies that errors do not grow as they are propagated.
A numerical method is said to be contractivity preserving (or simply contractive) if it satisfies
(1.23), possibly subject to some timestep restriction, whenever (1.23) is satisfied under forward
Euler integration.

Contractivity preserving methods are closely related to absolutely monotonic functions. A
function φ(z) is said to be absolutely monotonic at z = z0 if φ(z0) and all of its derivatives,
φ(n)(z0), are nonnegative. The radius of absolute monotonicity of φ, denoted R(φ), is the
largest value r such that φ(z) is absolutely monotonic for z ∈ (−r, 0].

1.4.1 Contractivity preservation for linear problems

To see this connection between absolute monotonicity and the SSP condition, consider the
linear, autonomous system

u′ = Lu, (1.24)

where the fixed matrix L is such that the numerical solution of (1.24) is contractive, in some
norm ‖ · ‖, under forward Euler (FE) integration, i.e.

||un + ∆tLun|| ≤ ||un|| for 0 ≤ ∆t ≤ ∆tFE (1.25)

Note that for the solution of (1.24), the concepts of contractivity (1.23) and strong stability
(1.6) are equivalent. Applying a Runge-Kutta method to (1.24) yields the iteration

un+1 = φ(∆tL)un (1.26)

where φ is the stability function of the method. Suppose we can rewrite φ as a combination
of iterated forward Euler steps, each of length ∆tFE = ∆t/R:

φ(∆tL) =
∑

i

ωi

(
I +

∆t

R
L

)i

, (1.27)

and note that the coefficients ωi must sum to one for consistency: φ(0) =
∑
ωi = 1. The

monotonicity condition (1.25) implies that ||I + ∆t
R
L|| ≤ 1 for ∆t

R
≤ ∆tFE, so if ωi ≥ 0, it

follows that ||φ(∆tL)|| ≤ 1, and hence the method is strong stability preserving.
The form (1.27) is easily obtained by expanding the stability function φ(z) in a power

series about z = −R:

φ(z) =
∑

i

φ(i)(−R)

i!
(x+R)i =

∑

i

Riφ(i)(−R)

i!

(
1 +

x

R

)i

. (1.28)
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Comparing (1.28) with (1.27) reveals that ωi = Riφ(i)(−R)
i!

, so ωi ≥ 0 if and only if φ and all its
derivatives are non-negative, i.e. if φ(z) is absolutely monotonic at z = −R. Hence absolute
monotonicity of the stability function is a sufficient condition for strong stability preservation
for the linear problem (1.24); in other words, a given method is SSP for linear problems under
the timestep restriction

∆t ≤ R∆tFE (1.29)

where R = R(φ). In fact, this timestep restriction is sharp in the case that L is the first order
upwind difference matrix and || · || is the maximum norm [79].

For simplicity we have considered a one-step method; applying an s-step method to (1.24)
yields the iteration

un+1 = ψ1(∆tL)un + ψ2(∆tL)un−1 + · · · + ψs(∆tL)un−s+1. (1.30)

The method is strong stability preserving for linear constant coefficient problems (1.24) under
the timestep restriction (1.29) where

R = min
j
R(ψj) (1.31)

is known as the threshold factor [79].
Absolute monotonicity of the stability function was studied in [50, 89, 56, 57, 45] to find

optimal contractive explicit and implicit methods of Runge-Kutta and linear multistep types
for linear systems.

In general, since (1.24) is a special case of (1.2), we must have c ≤ R for any given method.
For explicit linear multistep methods, ψi(z) = αi + βiz, so R(ψi) = αi/βi if αi, βi ≥ 0; hence
R is equal to the SSP coefficient c(α,β) from Theorem 1.1. For implicit linear multistep
methods, the difference between c and R for optimal methods is known to be small [57].

1.4.2 Contractivity preserving multistage methods for nonlinear problems

The analysis of SSP Runge-Kutta methods for nonlinear problems is more complicated. Here
we briefly outline the theory; the interested reader is referred to [51, 20, 34]. In order to state
the relationship between absolute monotonicity and the SSP coefficient for Runge-Kutta meth-
ods, we must restrict ourselves to irreducible Runge-Kutta methods – Runge-Kutta methods
that are not equivalent to a method with fewer stages. For a precise definition of reducibility
see, e.g., [22, Definition 3.1].

When a Runge-Kutta method is applied to a nonautonomous linear system of equations,
the resulting iteration involves a generalization of the stability function, known as the matrix-
valued K-function of the method. By considering absolute monotonicity of this function,
Kraaijevanger [51] extended the concept of absolute monotonicity of a function to absolute
monotonicity of a Runge-Kutta method. The radius of absolute monotonicity of a Runge-

16



Kutta method is denoted by R(A, b) and is the largest value of r ≥ 0 such that

(I + rA)−1 exists and

A(I + rA)−1 ≥ 0 (1.32a)

bT (I + rA)−1 ≥ 0 (1.32b)

A(I + rA)−1em ≤ em+1 (1.32c)

bT (I + rA)−1em ≤ em+1. (1.32d)

Here we have used the simpler equivalent conditions from [34], rather than the original def-
inition from [51]. All inequalities are to be understood componentwise, and em denotes the
vector of length m with all entries equal to one. If A ≥ 0, b ≥ 0 do not hold, we define
R(A, b) = 0. Kraaijevanger showed that, for general nonlinear, nonautonomous problems, an
irreducible Runge-Kutta method preserves contractivity for timesteps

∆t ≤ R(A, b)∆tFE

where ∆tFE is the largest contractivity preserving timestep under forward Euler integration.
For this reason, the term radius of contractivity is also used to denote the radius of absolute
monotonicity of a Runge-Kutta method.

More recently it has been proven that the radius of absolute monotonicity R(A, b) is equal
to the optimal SSP coefficient c(A, b), which is the largest value of c(α,β) over all Shu-Osher
forms (α,β) corresponding to the (fixed) Butcher form (A, b), [22, 33, 34]. Furthermore,
there is an explicit construction of a Shu-Osher form such that the optimal SSP coefficient is
evident [22, 34]. If a method (A, b) has radius of absolute monotonicity R(A, b) ≥ 0, we can
construct the optimal Shu-Osher representation as follows:

M0 = cA(I + cA)−1, M1 = cbT (I + cA)−1, cL = cM, c = R(A, b)

for 0 ≤ R(A, b) <∞. If R(A, b) = ∞ we use:

L0 = I − γP, L1 = bTP, M0 = γI, M1 = 0, γ = (max
i
pii)

−1

where P = (pij) = A−1 [22, 34].
For a given Runge-Kutta method, finding the optimal value of c(α,β) using the Shu-

Osher formulation requires solving a nonlinear optimization problem. The theory of absolute
monotonicity, on the other hand, provides a purely algebraic characterization of the SSP
coefficient, making calculation of c(A, b) trivial. This leads to simplification of the problem of
finding optimal methods [23]. For instance, recent investigations of optimal implicit [47] and
explicit [45] Runge-Kutta methods with many stages would not have been possible without
this simplification. In Section 5, we will see that the new theory also leads to a simplified
analysis of the SSP properties of spectral deferred correction methods.

For more details regarding the relationship between contractivity, absolute monotonicity,
and the Shu-Osher form, see [23, 22, 33, 34]. Higueras has extended this theory to include the
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case where some elements of A or b may be negative, by considering perturbed Runge-Kutta
methods [34]. This is equivalent, in the Shu-Osher representation, to considering F̃ .

Spijker has extended the theory of absolutely monotonic methods to the much larger class
of general linear methods [80]. These methods combine the approaches of both the multi-
step and Runge-Kutta methods, by taking function evaluations at multiple steps and multiple
stages. These methods can be written in the form

yi =
l∑

j=1

siju
(n−1)
j + ∆t

m∑

j=1

tijF (yj) (1 ≤ i ≤ m) (1.33a)

u
(n)
i = ym−l+i (1 ≤ i ≤ l), (1.33b)

so that the method is determined by the coefficient matrices S,T. The largest timestep under
which an irreducible method of this form preserves strong stability is shown to be c(S,T)∆tFE,
where c(S,T) is the radius of absolute monotonicity of the method, defined as the largest r ≥ 0
such that

(I + rT)−1 exists and (1.34a)

(I + rT)−1S ≥ 0 (1.34b)

(I + rT)−1T ≥ 0. (1.34c)

As usual, inequalities are understood component-wise, and we take c(S,T) = 0 if S ≥ 0 or
T ≥ 0 is violated. For further details, see [80].

2 Bounds on the SSP coefficient

For a given ODE it may be possible to satisfy a desired stability requirement using a method
that is not SSP or a timestep that violates the SSP timestep restriction. However, the SSP
property guarantees that any nonlinear stability property will be preserved for any ODE
provided only that it is satisfied using forward Euler. Clearly, the SSP property is a very
strong requirement, and imposes severe restrictions on other properties of a time discretization
method. Known results in contractivity theory lead to restrictions on the obtainable SSP
coefficient, and order barriers on SSP methods with positive SSP coefficient.

2.1 Runge-Kutta Methods

Many useful results for SSP Runge-Kutta methods were collected in [47]; we briefly review
them here. First, we introduce some notation. Let C IRK

m,p (CERK
m,p ) denote the optimal radius of

absolute monotonicity over the class of implicit (explicit) Runge–Kutta methods with at most
m stages and at least order p. Let Rm,p denote the optimal radius of absolute monotonicity
over all polynomials of degree at most m that approximate the exponential to order at least
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p (i.e., stability functions of m-stage, order p explicit Runge-Kutta methods). Since absolute
monotonicity of a method implies absolute monotonicity of the stability function, then

CERK
m,p ≤ Rm,p (2.35)

for any m, p. This bound is useful because values and properties of Rm,p are generally easier
to compute. Furthermore, equality in (2.35) is attained in many cases, leading to verification
of the optimality of methods found by numerical search.

By considering conditions (1.32) with r = 0, we see that R(A, b) > 0 implies A ≥ 0 and
b > 0 [51]. This provides a useful lower bound on the coefficients when searching for optimal
SSP Runge–Kutta methods.

The requirement of non-negativity of A and strict positivity of b leads to restrictions on the
stage order of an SSP method. The stage order p̃ is a lower bound on the order of convergence
when a method is applied to arbitrarily stiff problems. Low stage order may lead to order
reduction, i.e. slow convergence, when computing solutions of stiff ODEs. Any Runge–Kutta
method with non-negative coefficients A ≥ 0 must have stage order p̃ ≤ 2. Furthermore, if it
has p̃ = 2, then A must have a zero row [51]. There is also a relationship between the classical
order and the stage order: a Runge–Kutta method with weights b > 0 must have stage order
p̃ ≥ bp−1

2
c [51]. These results apply to all Runge-Kutta methods; however, when dealing with

explicit methods, stage order is limited to p̃ ≤ 1 whether or not one requires non-negative
coefficients [51, 14]. Combining the foregoing results, it follows that any irreducible Runge–
Kutta method with c(A, b) > 0 can be no greater than fourth order accurate if it is explicit
and no greater than sixth order accurate if it is implicit [51].

Hence implicit methods allow for higher stage order, and higher classical order than explicit
methods. However, implicit Runge–Kutta methods that are unconditionally SSP must have
order at most one i.e. C IRK

m,p < ∞ for p > 1 [79, 30]. This result is in contrast with linear
stability and B-stability, where some high-order implicit methods (i.e., the A-stable methods
and the algebraically stable methods, respectively) are unconditionally stability preserving.

2.1.1 Singly implicit and diagonally implicit methods

An m-stage Runge–Kutta method applied to a system of N ODEs typically requires the
solution of a system of mN equations. When the system results from the semi-discretization
of a system of nonlinear PDEs, N is typically very large and the equations are nonlinear,
making their solution very expensive. Using a transformation involving the Jordan form of A,
the amount of work can be reduced [4]. This is especially efficient for singly implicit (SIRK)
methods (those methods for which A has only one distinct eigenvalue), because the necessary
matrix factorizations can be reused. On the other hand, diagonally implicit (DIRK) methods,
for which A is lower triangular, can be implemented efficiently without transforming to the
Jordan form of A. The class of singly diagonally implicit (SDIRK) methods, which are both
singly implicit and diagonally implicit (i.e., A is lower triangular with all diagonal entries
identical), incorporates both of these advantages. For details on efficient implementation of
implicit Runge–Kutta methods see, e.g., [15].
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Contractivity theory provides barriers for the special case of singly implicit and diagonally
implicit methods. These barriers were reviewed in [47]. SSP SDIRK methods have the same
order barrier (p ≤ 4) as explicit methods. For DIRK methods in general, and for SIRK
methods that are SSP, the order of an m-stage method is at most m + 1. Furthermore, for
m-stage SIRK methods of order p ≥ 5, we find that c(A, b) is bounded by the optimal linear
SSP coefficient of m-stage explicit Runge–Kutta methods of the same order (see [50, 45] for
values of these optimal coefficients).

2.2 Linear multistep methods

Lenferink conducted an extensive study of contractive linear multistep methods [56, 57]. As
discussed above, the optimal contractive methods are also optimal SSP methods. Furthermore,
for explicit methods of this type, the SSP coefficient is simply the threshold factor. For implicit
methods, the two factors coincide in many cases, and the difference between them is generally
quite small [57]. For explicit s-step methods of order p, it holds that c ≤ s−p

s−1
for s > 1; for

implicit methods of order p > 1, c ≤ 2. While there appears to be no limit to the order
of accuracy of SSP linear multistep methods, high order accurate methods of this type are
subject to very small timestep restrictions (see Tables 4.1 and 4.3) and require very many
steps.

2.3 General linear methods

Bounds on the SSP coefficient for general linear methods have not been previously given.
Here we present a recent result from [46] on the upper bound of the SSP coefficient of explicit
general linear methods. Consider a general linear method involving at most m stages and s
steps. When applied to a linear constant coefficient problem, the method takes the form

un+1 = ψ0(∆tL)un + ψ1(∆tL)un−1 + · · · + ψs−1(∆tL)un−s+1.

where each ψi is a polynomial of degree at most m:

ψi =
m∑

j=0

aijz
j, 1 ≤ i ≤ s. (2.36)

The theory reviewed in the previous section tells us that the strong stability preserving coef-
ficient c is at most equal to the threshod factor R. We will show that if the method is at least
first order accurate, then the threshold factor is at most equal to the number of stages m.

The method is first order accurate if the following conditions are satisfied:

s∑

i=1

ai0 = 1 (2.37a)

s∑

i=1

(ai1 + (s− i)ai0) = s. (2.37b)
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Let R denote the threshold factor of the method. Since each ψi is absolutely monotonic
on the interval (−R, 0], we can write

ψi =
m∑

j=0

γij

(
1 +

z

R

)j

with γij ≥ 0. (2.38)

Equating the right hand sides of Equations (2.36) and (2.38) gives the following relation
between the coefficients aij and γij :

ail =
1

l!Rl

m∑

j=0

γij

l−1∏

n=0

(j − n). (2.39)

Substituting (2.39) in (2.37) yields

s∑

i=1

m∑

j=0

γij = 1. (2.40a)

s∑

i=1

m∑

j=0

γij(j +R(s− i)) = sR (2.40b)

Subtracting sm times (2.40a) from (2.40b) gives

s∑

i=1

m∑

j=0

γij (j +R(s− i) − sm) = s(R −m). (2.41)

Since, for 1 ≤ i ≤ s, 0 ≤ j ≤ m,

j +R(s − i) − sm = (j −m) +R(1 − i) + (R −m)(s− 1) ≤ (R−m)(s− 1), (2.42)

we have

s(R −m) =
s∑

i=1

m∑

j=0

γij (j +R(s − i)− sm)

≤ (s− 1)(R −m)
s∑

i=1

m∑

j=0

γij

= (s− 1)(R −m),

which implies that R ≤ m.
Since the SSP coefficient c(S,T) (relevant to nonlinear problems) is no larger than the

threshold factor R, this implies that the SSP coefficient of any explicit general linear method
is at most equal to its number of stages.
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3 Optimal SSP Runge-Kutta Methods

In this section we review the best available explicit and implicit SSP Runge-Kutta methods.
In addition to optimization of the effective SSP coefficient, we pay attention (for explicit
methods) to those that have low-storage implementations – an important consideration when
solving PDEs. For implicit methods, we will pay particular attention to methods which can be
implemented efficiently (i.e., diagonally implicit and singly implicit methods). In both cases,
we will see that the optimal SSP methods often possess these favorable secondary properties.

Again we focus on methods with positive coefficients, because they are much more widely
used. For SSP Runge-Kutta methods with negative coefficients, see [21, 30, 26, 28, 35, 75, 72,
78, 76, 80].

3.1 Optimal explicit SSP Runge-Kutta methods

In this section, we present the best known explicit SSP Runge-Kutta methods. From the
results above (Section 2.1) we know that these methods have order at most four. We will
also discuss low-storage implementations of these methods. In the following, SSPRK (m,p)
denotes the optimal m-stage, p-th Runge-Kutta order method.

The two-stage second-order and three-stage third-order optimal explicit SSPRK schemes
were presented in [78]. These are optimal among all Runge-Kutta methods with their respec-
tive order and number of stages [29]. They are:
SSPRK (2,2):

u(1) = un + ∆tF (un) (3.1)

un+1 =
1

2
un +

1

2
u(1) +

1

2
∆tF (u(1)),

and SSPRK (3,3):

u(1) = un + ∆tF (un)

u(2) =
3

4
un +

1

4
u(1) +

1

4
∆tF (u(1)) (3.2)

un+1 =
1

3
un +

2

3
u(2) +

2

3
∆tF (u(2)).

Although both these methods have SSP coefficient c = 1, which permits a timestep of the
same size as forward Euler would permit, it is clear that the computational cost is double and
triple (respectively) that of the forward Euler. Thus, we find it useful to define the effective
SSP coefficient as ceff = c

m
, where m is the number of stages. In the case of SSPRK (2,2) and

SSPRK (3,3) the effective SSP coefficient is ceff = 1
2

and ceff = 1
3
, respectively. For a given

order of accuracy, optimal SSPRK methods with more stages typically have larger effective
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SSP coefficient. For instance, the optimal five-stage, third order method

u(1) = un + 0.37726891511710∆tF (un)

u(2) = u(1) + 0.37726891511710∆tF (u(1))

u(3) = 0.56656131914033un + 0.43343868085967u(2) + 0.16352294089771∆tF (u(2))

u(4) = 0.09299483444413un + 0.00002090369620u(1) + 0.90698426185967u(3) (3.3)

+0.00071997378654∆tF (un) + 0.34217696850008∆tF (u(3))

u(5) = 0.00736132260920un + 0.20127980325145u(1) + 0.00182955389682u(2)

+0.78952932024253u(4) + 0.00277719819460∆tF (un) + 0.00001567934613∆tF (u(1))

+0.29786487010104∆tF (u(1))

has ceff = 0.53, larger than that of SSPRK (3,3).
There exists no explicit four-stage fourth-order Runge Kutta method with c > 0 [51, 29];

The numerically optimal five stage method was found in [51] and again independently in [81].
SSPRK (5,4):

u(1) = un + 0.391752226571890∆tF (un)

u(2) = 0.444370493651235un + 0.555629506348765u(1)

+0.368410593050371∆tF (u(1))

u(3) = 0.620101851488403un + 0.379898148511597u(2)

+0.251891774271694∆tF (u(2))

u(4) = 0.178079954393132un + 0.821920045606868u(3)

0.544974750228521∆tF (u(3))

un+1 = 0.517231671970585u(2)

+0.096059710526147u(3) + 0.063692468666290∆tF (u(3))

+0.386708617503269u(4) + 0.226007483236906∆tF (u(4))

This method has SSP coefficient c = 1.508, and effective SSP coefficient ceff = 0.302 which
means that this method is higher order and only slightly less efficient than the popular SSPRK
(3,3).

3.1.1 Low-storage considerations

Storage is an important consideration for large scale scientific computing in three space dimen-
sions. A naive implementation of an m-stage Runge-Kutta method requires m + 1 memory
registers. However, if certain algebraic relations between the coefficients are satisfied, the
method may be implemented with fewer registers. Three such types of relations have been
exploited in the literature [93, 44, 45]. The resulting types of low-storage methods make
different important assumptions on the manner in which F is evaluated.

Consider two storage registers, q1 and q2, each of size N , where N denotes the size of the
ODE system. The low-storage methods of Williamson [93] assume that it is possible to make
assignments of the form
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q1 := q1 + F(q2),

without using (much) additional storage beyond the two registers. As noted in [44], this
requires that the evaluation be done in ’piecemeal fashion’. This is natural, for instance, if F
corresponds to a spatial discretization of a PDE where the spatial stencil is localized, which
is usually the case for semi-discretizations of hyperbolic PDEs. We refer to these as MN
methods, where M represents the number of storage registers required.

The low-storage methods of van der Houwen type [44] make instead the assumption that
it is possible to make assignments of the form

q1 := F(q1),

without much additional storage beyond a single register. This is apparently reasonable for
compressible Navier-Stokes calculations [44]. Following the terminology of [44], we refer to
these as MR methods, where M represents the number of storage registers required.

Some SSP low storage implementations of these two types were studied in [29, 30, 72, 75].
In [72], Ruuth presented ten low storage methods, of order p = 3 and p = 4 and m = 3, 4, 5
stages resulting from numerical optimization. Some of these methods are guaranteed optimal,
others are the best found in extensive numerical searches.

In [45] some low-storage implementations were presented that require the assumption that
it is possible to take a forward Euler step

q1 := q1 + F(q1),

without much additional storage beyond a single register. This assumption is quite strong,
but valid for spatial discretizations with localized stencils, with careful programming. We
refer to these as MS methods.

In the following, a method requiringM storage registers is referred to as anMN (MR,MS)
method. Sometimes it is necessary to retain the value of the solution at the previous timestep,
usually in order to restart the step if some accuracy or stability requirement is violated. While
most low-storage methods will require an additional register in this case, some will not. Such
methods are denoted by MN* (or MR*, MS*).

Second order methods

SSPRK (m,2)

βi,i−1 =

{
1

m−1
1 ≤ i ≤ m− 1

1
m

i = m
(3.4a)

αi,i−1 =

{
1 1 ≤ i ≤ m− 1
m−1

m
i = m

(3.4b)

αm,0 =
1

m
, (3.4c)

with abscissas ci = i−1
m−1

(1 ≤ i ≤ m). The first method in this family (m = 2) was proposed
in [78]. The full family was found in [51] and again independently in [81, 27]. These methods
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are SSP with c = m − 1, so they have ceff = m−1
m

. They can be implemented using only
three memory registers, even if the previous timestep must be retained. These methods can
be implemented in 3N* or 3R* form. In [45], a 2S* implementation was given.

Third order methods

Optimal three- and four-stage third-order SSP Runge-Kutta methods, originally reported
in [78] and [51], respectively, can be implemented in 2S* (or 3N*/3R*) fashion. The four-
stage method is 50% more efficient and requires the same amount of memory as the three-stage
method.

Further savings in storage costs can be obtained if the solution at the previous timestep
can be discarded. These methods are denoted without an asterisk, e.g. 2N or 3N methods. Of
course, the previous timestep can be retained at the cost of using one more register. Third-
order methods of this type were studied in [72]; the best 2R method has ceff = 0.297; the best
3R method has ceff = 0.513. These are more efficient than the optimal 2N and 3N methods,
respectively. In [45], a family of third-order 2S SSP Runge-Kutta methods with m = n2 stages
(for n > 1) was discovered:

αi,i−1 =

{
n−1
2n−1

i = n(n+1)
2

1 otherwise
(3.5a)

αn(n+1)
2

,
(n−1)(n−2)

2
=

n

2n− 1
βi,i−1 =

αi,i−1

n2 − n
. (3.5b)

These methods are optimal in terms of SSP timestep restriction, with SSP coefficient c =
n2 − n. The effective SSP coefficient for this method ceff = 1 − 1

n
= 1 − 1√

m
, can be made as

close to one as desired by taking more stages, without raising the storage cost. Furthermore,
the coefficients are simple rational numbers. Note that the four-stage 2S* method mentioned
above is the first member of this family. A low-storage implementation of (3.5) is given in
[45].

Fourth order methods:

The optimal five-stage, fourth order method was given above. By further increasing the
number of stages allowed, we can obtain fourth-order SSP methods with larger timestep
restriction. Spiteri and Ruuth [82, 81] and Macdonald [61] developed fourth order methods
with up to eight stages. The most efficient (eight-stage) method has ceff = 0.518 and can be
implemented in 3N fashion.

In [45] a ten-stage fourth order 2S Runge-Kutta method was found with an effective SSP
coefficient greater than any previously known fourth order full-storage method. Addition-
ally, this is the only fourth order SSP method to be analytically proved optimal, because
it achieves the optimal bound on ten-stage, fourth order SSP methods for linear problems:

25



c = 6. Furthermore, the method has simple rational coefficients. The nonzero coefficients are

βi,i−1 =





1
6

i ∈ {1..4, 6..9}
1
15

i = 5
1
10

i = 10
αi,i−1 =





1 i ∈ {1..4, 6..9}
2
5

i = 5
3
5

i = 10
(3.6a)

β10,4 =
3

50
α10,4 =

9

25
(3.6b)

α5,0 =
3

5
α10,0 =

1

25
. (3.6c)

The abscissas are

c =
1

6
· (0, 1, 2, 3, 4, 2, 3, 4, 5, 6)T .

A 2S implementation of the ten-stage method is:

q1 = u; q2=u;

for i=1:5

q1 = q1 + dt*F(q1)/6;

end

q2 = 1/25*q2 + 9/25*q1;

q1 = 15*q2-5*q1;

for i=6:9

q1 = q1 + dt*F(q1)/6;

end

q1 = q2 + 3/5*q1 + 1/10*dt*F(q1);

u=q1;

In [45] fourth-order 3S methods with more than ten stages were found that are more
efficient than the 2S ten-stage method above; the most efficient has 26 stages and ceff ≈ 0.696.
Table 3.4 contains a comparison of the explicit methods described in this section.

For Runge-Kutta methods with many stages, it is important to consider amplification
of roundoff errors occurring in the intermediate stages. The associated stability property is
referred to as internal stability. In [45], it was shown that all the methods in this section are
internally stable.

3.1.2 Optimal SSP Runge-Kutta methods for linear constant coefficient prob-
lems

While SSP methods were developed for nonlinear hyperbolic PDEs, this property has proven
useful for linear problems as well. In [58], the authors used the energy method to analyze the
stability of Runge-Kutta methods for ODEs resulting from coercive approximations such as
those in [25]. Using this method it can be proven, for example, that the fourth order Runge-
Kutta method preserved a certain stability property with a CFL number of 1

31
. However,

using SSP theory, one easily shows that the same stability property is preserved in the linear
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ceff = c/m ρm,p = Rm,p/m
HHHHHHm

p
2 3 4 2 3 4

1 - - - - - -
2 0.5 - - 0.5 - -
3 0.67 0.33 - 0.67 0.33 -
4 0.75 0.5 - 0.75 0.5 0.25
5 0.8 0.53 0.30 0.8 0.53 0.40
6 0.83 0.59 0.38 0.83 0.59 0.44
7 0.86 0.61 0.47 0.86 0.61 0.50
8 0.88 0.64 0.52 0.88 0.64 0.54
9 0.89 0.67 0.54 0.89 0.67 0.57
10 0.9 0.68 0.60 0.9 0.68 0.60
11 0.91 0.69 0.59 0.91 0.69 0.62

Table 3.3: Effective SSP coefficients ceff of best known explicit SSP methods, and scaled
threshold factors ρ of optimal methods for linear systems. A dash indicates that SSP methods
of this type cannot exist. Bold entries indicate methods that have ceff = ρm,p.

Popular Method ceff Storage Improved Method ceff Storage
SSPRK (2,2) 0.500 2N* SSPRK (m,2) 1 − 1/m 2N*
SSPRK (3,3) 0.333 2N* SSPRK (n2,3) 1 − 1/n 2N
SSPRK (5,4) 0.377 3N SSPRK (10,4) 0.600 2N

Table 3.4: Properties of some optimal SSP Runge-Kutta methods. An asterisk indicates that
the previous timestep can be retained without increasing the required number of registers.
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case under a CFL number as large as 1. Linear SSP Runge-Kutta methods are thus useful
from the point of view of stability analysis. These methods are also of interest in their own
right, for solving linear wave equations, such as Maxwell’s equations and linear elasticity.

As discussed in Section 1.4.1, the conditions for a method to preserve strong stability for
linear autonomous systems only are less restrictive than those required for the nonlinear SSP
property.

For such problems, the contractivity condition (1.23) and the monotonicity condition (1.6)
are clearly equivalent. Recall that the timestep restriction is given in this case by (1.29)
with R = R(φ) [79]. For explicit Runge-Kutta methods with m stages and order p, φ(z)
is a polynomial of degree m that approximates the exponential function to order p near
z = 0. The problem of finding such optimal methods was first considered in [50], where
optimal methods were given for many values of m and p, including 1 ≤ p ≤ m ≤ 10, and
p ∈ {1, 2, 3, 4,m−1,m−2,m−3,m−4} for anym, as well as an algorithm for the computation
of the optimal coefficient and method for arbitrarym, p. Unfortunately, the computational cost
of this algorithm grows exponentially in m and p. The results for the cases p ∈ {1, 2,m−1,m}
were found again independently using a related approach in [30, 27]. Recently, an efficient
algorithm for the determination of optimal methods for any m, p was given in [45].

Any m-stage, p-th order SSP Runge-Kutta method (1.15) with nonnegative coefficients
αi,k and βi,k must have SSP coefficient c ≤ m− p+ 1. This barrier is not generally sharp, but
the SSP Runge-Kutta methods for linear constant coefficient problems which do attain this
barrier are listed below.

SSPRK linear (m,m): [30] The class of m stage schemes given by:

u(i) = u(i−1) + ∆tLu(i−1), i = 1, ...,m− 1

u(m) =
m−2∑

k=0

αm,ku
(k) + αm,m−1

(
u(m−1) + ∆tLu(m−1)

)
,

where α1,0 = 1 and

αm,k =
1

k
αm−1,k−1, k = 1, ...,m− 2

αm,m−1 =
1

m!
, αm,0 = 1 −

m−1∑

k=1

αm,k

is an m-order linear Runge-Kutta method which is SSP with threshold factor R = 1, which is
optimal among all m stage, p = m order SSPRK methods with nonnegative coefficients. The
scaled threshold factor is ρ = 1

m
.

SSPRK linear (m,1): The m stage, first order SSP Runge-Kutta method given by

u(0) = un

u(i) =

(
1 +

∆t

m
L

)
u(i−1), i = 1, ...,m

un+1 = u(m)
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has threshold factor R = m, which is optimal in the class of m stage, order p = 1 methods
with nonnegative coefficients. This allows for a larger timestep but the computational cost
increases correspondingly. This is reflected by the fact that the effective threshold factor is
ρ = 1, which is equivalent to the forward Euler method.

SSPRK linear (m,2): The m stage, second order SSP methods given in (3.4) above
have an optimal threshold factor R = m − 1. Although these methods were designed for
linear problems, they are also nonlinearly second order [81]. Each such method uses m stages
to attain the order usually obtained by a 2-stage method, but has optimal threshold factor
R = m− 1, thus the scaled threshold factor here is ρ = m−1

m
.

SSPRK linear (m,m-1): The m stage, order p = m− 1 method

u(0) = un

u(i) = u(i−1) +
1

2
∆tLu(i−1), i = 1, ...,m− 1

u(m) =
m−2∑

k=0

αm,ku
(k) + αm,m−1

(
u(m−1) +

1

2
∆tLu(m−1)

)
,

un+1 = u(m)

with the coefficients given by

α2,0 = 0 α2,1 = 1

αm,k =
2

k
αm−1,k−1, k = 1, ...,m− 2

αm,m−1 =
2

m
αm−1,m−2, αm,0 = 1 −

m−1∑

k=1

αm,k

is SSP with optimal (for methods with nonnegative coefficients) threshold factor R = 2. The
scaled threshold factor for these methods is ρ = 2

m
.

An interesting application of these methods is the case of a constant linear operator with
a time dependent forcing term [27, 77]. This case could arise from a linear PDE with time
dependent boundary conditions, such as Maxwell’s equations (see [8]), which can be written
as:

ut = Lu+ f(t) (3.7)

where u = [ui] is a vector, L = [Li,j] is a constant matrix and f(t) = [fi(t)] is a vector of
functions of t. The functions f(t) can typically be written as or approximated by

fi(t) =
n∑

j=0

ai
jqj(t) = [Aq(t)]i
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where A = [Ai,j] = [ai
j] is a constant matrix and q(t) = [qj(t)] are a set of functions which

have the property that q′(t) = Dq(t), where D is a constant matrix. If so, then the equation
(3.7) can be converted to a linear constant-coefficient ODE of the form

yt = My(t) , (3.8)

where

y(t) =

(
q(t)
u(t)

)
and M =

(
D 0
A L

)
.

Thus, an equation of the form (3.7) can be approximated (or given exactly) by a linear constant
coefficient ODE, and the SSP Runge-Kutta methods for linear constant coefficient operators
can be applied to guarantee that any strong stability properties satisfied with forward Euler
will be preserved.

3.2 Optimal implicit SSP Runge-Kutta methods

For classical stability properties (such as linear stability or B-stability), implicit methods exist
that are stable under arbitrarily large timesteps. Similarly, it can be easily shown that any
spatial discretization F which is strongly stable in some norm using the forward Euler method
with some finite timestep restriction will be unconditionally strongly stable, in the same norm,
using the implicit Euler method [41, 33]. However, no unconditionally SSP method has order
greater than one [79], although implicit methods may have SSP coefficients significantly larger
than those of explicit methods with the same order and number of stages. The question is,
then, whether the allowable step-size can be large enough to offset the extra computational
effort required in the implicit solution of the resulting system at each iteration.

Recall from Section 2.1 that implicit SSP Runge-Kutta methods have order at most six;
existence of methods of order up to five was established in [51]. Recently, Ferracina and
Spijker investigated optimal singly diagonally implicit methods [24]. They showed that such
methods have order at most four, and found optimal methods (by numerical optimization) of
up to order four and up to eight stages. They also conjectured the form of optimal second
and third order methods with any number of stages. In [47], fully implicit SSP Runge-Kutta
methods were investigated via numerical optimization. This search yielded the first sixth
order SSP Runge-Kutta methods, demonstrating that Kraaijevanger’s order barrier is sharp.
Remarkably, searching among the class of fully implicit methods, the optimal methods of
second and third order were found to be singly diagonally implicit; in fact, they were the very
methods found already in [24]. The optimal methods of fourth through sixth order were found
to be diagonally implicit.

Unfortunately, all of these methods turn out to have effective SSP coefficient less than or
equal to two, making them probably too inefficient for practical use. We reproduce some of
the optimal methods and SSP coefficients here, as they may be of theoretical interest.

In the following, we give modified Shu–Osher arrays for the numerically optimal methods.
To simplify implementation, we present modified Shu–Osher arrays in which the diagonal
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elements of λ are zero. This form is a simple rearrangement and involves no loss of gener-
ality. In comparing methods with different numbers of stages, one is usually interested in
the relative time advancement per computational cost. For diagonally implicit methods, the
computational cost per timestep is proportional to the number of stages. We therefore define
the effective SSP coefficient of a method as c

m
; this normalization enables us to compare the

cost of integration up to a given time using DIRK schemes of order p > 1. However, for
non-DIRK methods of various m, it is much less obvious how to compare computational cost.

Second order methods:

The numerically optimal second-order method with m stages is

λ =




0
1 0

1
. . .
. . . 0

1



, µ =




1
2m
1

2m
1

2m

1
2m

. . .

. . . 1
2m
1

2m



. (3.9)

These methods have SSP coefficient c = 2m, and effective SSP coefficient ceff = 2. Note
the sparse, bidiagonal modified Shu–Osher arrays, which make these methods efficient to
implement. These methods were proven optimal analytically for m = 1, 2 in [24], and using
Baron for m = 3 in [47]. The one-stage method of this class is the implicit midpoint rule,
while the m-stage method is equivalent to m successive applications of the implicit midpoint
rule [21]. Thus these methods inherit the desirable properties of the implicit midpoint rule
such as algebraic stability and A-stability [31]. If these methods are indeed optimal, this
would imply that the effective SSP coefficient of any Runge–Kutta method of order greater
than one is at most equal to two.

Third-order methods:

For m ≥ 2 the numerically optimal methods have coefficients

µ =




µ11

µ21
. . .
. . . µ11

µ21 µ11

µm+1,m



, λ =




0

1
. . .
. . . 0

1 0
λm+1,m



, (3.10a)

where

µ11 =
1

2

(
1 −

√
m− 1

m+ 1

)
, µ21 =

1

2

(√
m+ 1

m− 1
− 1

)
, (3.10b)

µm+1,m =
m+ 1

m(m+ 1 +
√
m2 − 1)

, λm+1,m =
(m+ 1)(m− 1 +

√
m2 − 1)

m(m+ 1 +
√
m2 − 1)

. (3.10c)
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HHHHHHm
p Implicit Methods

2 3 4 5 6
1 2 - - - -
2 2 1.37 - - -
3 2 1.61 0.68 - -
4 2 1.72 1.11 0.29
5 2 1.78 1.21 0.64
6 2 1.82 1.30 0.83 0.030
7 2 1.85 1.31 0.89 0.038
8 2 1.87 1.33 0.94 0.28
9 2 1.89 1.34 0.99 0.63
10 2 1.90 1.36 1.01 0.81
11 2 1.91 1.38 1.03 0.80

Table 3.5: Effective SSP coefficients of best known implicit methods. A dash indicates that
SSP methods of this type cannot exist. A blank space indicates that no SSP methods of this
type were found.

These methods have SSP coefficient c = m− 1 +
√
m2 − 1. The m = 2 method was shown to

be optimal in [24].

Fourth- through sixth- order methods

All numerically optimal methods of order 4 ≤ p ≤ 6 we found in [47] are diagonally
implicit. We list effective SSP coefficients of the numerically optimal methods in Table 3.5.
We refer to Table 3.3, which contains the effective coefficients of optimal explicit methods, for
comparison. Many of these implicit methods have representations that allow for very efficient
implementation in terms of storage. The coefficients of these representations are available
online [48].

The SSP condition provides a guarantee of other necessary properties. When considering
implicit Runge-Kutta methods, it is important to determine whether there exists a unique
solution of the stage equations. The strong stability preserving timestep restriction turns out
to be sufficient for this as well [51, Theorem 7.1]. Furthermore, the SSP condition serves to
guarantee that the errors introduced in the solution of the stage equations due to numerical
roundoff and (for implicit methods) errors in the implicit solve are not unduly amplified [51,
Theorem 7.2].

4 Multistep methods

In this section, we consider the SSP properties of linear multistep methods. We consider only
methods with nonnegative coefficients. For results on linear multistep methods with negative
coefficients see [78, 30, 41, 26, 73]. The analysis of the SSP property for multistep methods
is much simpler than for Runge-Kutta methods, largely because the form (1.16) for these
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methods is unique. However, the resulting timestep restrictions are very small and exclude
many commonly used methods, which has led to the consideration of methods with particular
starting procedures.

4.1 Explicit linear multistep methods

As discussed in Section 1.4.2, for explicit linear multistep methods the requirement of absolute
monotonicity leads immediately to the same conditions as the approach of writing the method
in terms of convex combinations of forward Euler steps. In other words, the criteria for the
method to be SSP turn out to be the same whether one considers linear or nonlinear problems.

It was shown in [30] that for s ≥ 2, there is no s-step, s-th order SSP method with all
non-negative βi, and there is no s step SSP method of order (s+ 1). Thus, we must consider
increasing the number of steps to improve the timestep restriction for SSP multistep methods.
In this case, adding steps may increase the SSP coefficient but does not require additional
computation, only additional storage.

Optimal contractive explicit linear multistep methods were investigated by Lenferink [56],
who discovered many interesting properties of these methods and computed optimal methods
for up to 20 stages and 7th order accuracy. The results are reproduced here in Table 4.1. The
optimal s-step second-order method was shown to have coefficients

α1 =
(s− 1)2 − 1

(s− 1)2
, αs =

1

(s− 1)2
, β1 =

s

s− 1

and SSP coefficient c = s−2
s−1

(as usual, the unlisted coefficients are zero).
The coefficients of some optimal third- and fourth-order methods are listed in Table 4.2.

Note that, as with Runge–Kutta methods, we could also consider introducing the downwind
operator F̃ to improve the SSP coefficient, but as before this approach does double the number
of computations required.

The restrictive SSP coefficients observed in the SSP multistep methods are not surprising,
considering that we require the SSP property to hold for arbitrary starting values. An illus-
tration of the difficulty is given in [41]: Consider the simple example of the well-known BDF2
method applied to the problem u′(t) = 0:

u2 =
4

3
u1 −

1

3
u0.

Clearly, this method is not SSP (α2 is negative!). In other words, it is not always possible to
obtain ||u2|| ≤ ||u0|| whenever ||u1|| ≤ ||u0||. However, it is also clear that the only relevant
choice for this problem is u1 = u0, and in this case we do obtain (trivially) ||u2|| ≤ ||u0||.
Using this idea, Hundsdorfer, Ruuth, and Spiteri [41] examined the required step-size for
several multistep methods with particular starting procedures. Rather than satisfying a strict
monotonicity property, these methods guarantee the boundedness property

||un|| ≤M ||u0||

33



1 2 3 4 5 6 7
1 1.000
2 1.000
3 1.000 0.500
4 1.000 0.667 0.333
5 1.000 0.750 0.500 0.021
6 1.000 0.800 0.583 0.165
7 1.000 0.833 0.583 0.282 0.038
8 1.000 0.857 0.583 0.359 0.145
9 1.000 0.875 0.583 0.393 0.228
10 1.000 0.889 0.583 0.421 0.282 0.052
11 1.000 0.900 0.583 0.443 0.317 0.115
12 1.000 0.909 0.583 0.460 0.345 0.175 0.018
13 1.000 0.917 0.583 0.474 0.370 0.210 0.077
14 1.000 0.923 0.583 0.484 0.390 0.236 0.116
15 1.000 0.929 0.583 0.493 0.406 0.259 0.154
16 1.000 0.933 0.583 0.501 0.411 0.276 0.177
17 1.000 0.938 0.583 0.507 0.411 0.291 0.198
18 1.000 0.941 0.583 0.513 0.411 0.304 0.217
19 1.000 0.944 0.583 0.517 0.411 0.314 0.232
20 1.000 0.947 0.583 0.521 0.411 0.322 0.246

Table 4.1: SSP coefficients of some optimal explicit SSP linear multistep methods

where M is a constant depending on the starting procedures. Methods of this type were
further considered in [73, 39], and methods of up to sixth order were given with reasonably
large timestep coefficients. We give here the coefficients of the methods that performed best
in numerical tests.

The three-step, third order method has timestep coefficient CLM = 0.537 and

α1 =1.908535476882378 α2 = − 1.334951446162515 α3 =0.426415969280137

β1 =1.502575553858997 β2 = − 1.654746338401493 β3 =0.670051276940255

The four-step, fourth order method has timestep coefficient CLM = 0.458 and

α1 = 2.628241000683208 β1 = 1.618795874276609

α2 = − 2.777506277494861 β2 = − 3.052866947601049

α3 = 1.494730011212510 β3 = 2.229909318681302

α4 = − 0.345464734400857 β4 = − 0.620278703629274

This creative approach to SSP multistep methods demonstrates that the SSP criteria may
sometimes be relaxed or replaced by other conditions on the method.

4.2 Implicit multistep methods

For implicit linear multistep methods, the conditions for SSP are stronger than those required
for absolute monotonicity of the stability function [57]. Hence it follows from Spijker’s work
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steps order SSP coefficient αi

m p c βi

4 3 1
3

16
27

, 0, 0, 11
27

16
9

, 0, 0, 4
9

5 3 1
2

25
32

, 0, 0, 0, 7
32

25
16

, 0, 0, 0, 5
16

6 3 0.5828 0.850708871672579,0, 0, 0, 0.030664864534383,0.118626263793039

1.459638436015276,0, 0, 0, 0.052614491749200,0.203537849338252

5 4 0.0212 0.048963857415019, 0, 0.008344481263315, 0.899467614699687

2.310657177904340, 0, 0.393785059937890, 2.039789323349077, 0

6 4 0.1648 0.342460855717007, 0, 0, 0.191798259434736, 0.093562124939008, 0.372178759909247

2.078553105578060, 0, 0, 1.164112222279710, 0.567871749748709, 0

Table 4.2: Coefficients of some optimal explicit SSP linear multistep methods

[79] that there are no unconditionally SSP implicit linear multistep methods of order greater
than one (see also [30] for a different proof of this). Furthermore, it follows from a result
due to Lenferink [57] that any linear multistep method of order p > 1 has SSP coefficient no
greater than c = 2 [41].

It is interesting to note that this bound is actually obtained, for example, by the trapezoidal
method. If we wish to compare the efficiency of the trapezoidal method, which involves a
system of equations with only one function evaluation and has SSP coefficient c = 2, with
that of the explicitRunge-Kutta method SSPRK (2,2), which requires two function evaluations
and has a SSP coefficient c = 1, we notice that the explicit method requires four times as
many function evaluations per unit time. However, the cost of solving the implicit system
of equations is usually greater than the cost of four explicit function evaluations, so that the
explicit method is more computationally efficient.

Lenferink determined the optimal methods of up to twenty steps and order eight [57]; his
results are shown in Table 4.3. Hundsdorfer, Ruuth and Spiteri [41] studied the case of implicit
two step methods with different starting procedures, to see if this approach provides a benefit
similar to that seen in explicit multistep methods. Even with suitable starting procedures,
the step-size restrictions for the implicit multistep methods are hardly better than those of
explicit methods. Hundsdorfer and Ruuth [39] showed that, in fact, methods of this type with
order greater than one are subject to the same maximal SSP coefficient of two. Thus, implicit
SSP multistep methods feature step-size restrictions that are too severe to make the use of
these methods efficient.
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1 2 3 4 5 6 7 8
1 ∞ 2.000
2 ∞ 2.000 1.000
3 ∞ 2.000 1.500 1.000
4 ∞ 2.000 1.667 1.243 0.667
5 ∞ 2.000 1.750 1.243 0.796 0.500
6 ∞ 2.000 1.800 1.243 0.929 0.660 0.300
7 ∞ 2.000 1.833 1.243 1.006 0.784 0.468 0.197
8 ∞ 2.000 1.857 1.243 1.052 0.868 0.550 0.345
9 ∞ 2.000 1.875 1.243 1.084 0.905 0.642 0.443
10 ∞ 2.000 1.889 1.243 1.106 0.905 0.690 0.533
11 ∞ 2.000 1.900 1.243 1.123 0.905 0.733 0.580
12 ∞ 2.000 1.909 1.243 1.136 0.905 0.764 0.625
13 ∞ 2.000 1.917 1.243 1.147 0.905 0.781 0.662
14 ∞ 2.000 1.923 1.243 1.155 0.905 0.795 0.692
15 ∞ 2.000 1.929 1.243 1.162 0.905 0.806 0.714
16 ∞ 2.000 1.933 1.243 1.168 0.905 0.815 0.719
17 ∞ 2.000 1.938 1.243 1.174 0.905 0.823 0.719
18 ∞ 2.000 1.941 1.243 1.178 0.905 0.829 0.719
19 ∞ 2.000 1.944 1.243 1.182 0.905 0.835 0.719
20 ∞ 2.000 1.947 1.243 1.186 0.905 0.839 0.719

Table 4.3: SSP coefficients of optimal implicit SSP linear multistep methods

5 Deferred correction methods

In this section we survey the recent work [60] on the study of the SSP property of a newly de-
veloped time discretization technique, namely the (spectral) deferred correction (DC) method
constructed in [17]. An advantage of this method is that it is a one step method, just like the
Runge-Kutta methods, but it can be constructed easily and systematically for any order of
accuracy. This is in contrast to Runge-Kutta methods which are more difficult to construct
for higher order of accuracy, and to multistep methods which need more storage space and
are more difficult to restart with a different choice of the timestep ∆t. Linear stability, such
as the A-stability, A(α)-stability, or L-stability issues for the DC methods were studied in,
e.g. [17, 65, 94].

The (s+1)-th order DC time discretization of (1.2) can be formulated as follows. We first
divide the timestep [tn, tn+1] where tn+1 = tn+∆t into s subintervals by choosing the points t(m)

for m = 0, 1, · · · , s such that tn = t(0) < t(1) < · · · < t(m) < · · · < t(s) = tn+1. We use ∆t(m) =
t(m+1) − t(m) to denote the sub-timestep and u

(m)
k to denote the k-th order approximation to

u(t(m)). The nodes t(m) can be chosen equally spaced, or as the Chebyshev Gauss-Lobatto
nodes on [tn, tn+1] for high order accurate DC schemes to avoid possible instability associated
with interpolation on equally spaced points. Starting from un, the DC algorithm to calculate
un+1 is in the following.

Compute the initial approximation
u

(0)
1 = un.
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Use the forward Euler method to compute a first order accurate approximate solution
u1 at the nodes {t(m)}s

m=1:

For m = 0, · · · , s− 1
u

(m+1)
1 = u

(m)
1 + ∆t(m)F (u

(m)
1 ). (5.1)

Compute successive corrections
For k = 1, · · · , s
u

(0)
k+1 = un.

For m = 0, · · · , s− 1

u
(m+1)
k+1 = u

(m)
k+1 + θk∆t

(m)(F (u
(m)
k+1) − F (u

(m)
k )) + Im+1

m (F (uk)), (5.2)

where
0 ≤ θk ≤ 1 (5.3)

and Im+1
m (L(uk)) is the integral of the s-th degree interpolating polynomial on the s + 1

points (t(`), L(u
(`)
k ))s

`=0 over the subinterval [t(m), t(m+1)], which is the numerical quadrature
approximation of

∫ t(m+1)

t(m)

F (u(τ ))dτ. (5.4)

Finally we have un+1 = u
(s)
s+1.

The scheme described above with θk = 1 is the one discussed in [17, 65]. In [94], the
scheme is also discussed with general 0 ≤ θk ≤ 1 to enhance linear stability. The term with
the coefficient θk does not change the order of accuracy.

In [60], the SSP properties of the DC time discretization for the second, third and fourth
order accuracy (s = 1, 2, 3), were studied. This is just a preliminary study, as the real
advantage of the DC time discretization is expected to show more clearly for much higher
order of accuracy (the spectral DC method). The findings in [60] can be summarized below:

• The second order (s = 1) DC time discretization has no subgrid point inside the interval
[tn, tn+1], and it is identical to the optimal second order Runge-Kutta SSP scheme (3.1).

• For the third order (s = 2) DC time discretization, there is only one subgrid point inside
the interval [tn, tn+1]. By symmetry, this point should be placed in the middle, that is,
t(0) = tn, t(1) = tn + 1

2
∆t, t(2) = tn+1.

A numerical optimization procedure can then be performed to search for the SSP scheme
with the largest SSP coefficient. Unfortunately, it seems that negative β must appear
hence the operator F̃ must be used. A SSP scheme with 10 evaluations of F or F̃ is
found to have a SSP coefficient c = 1.2956. Several other third order SSP DC schemes
are also found in [60] within specific subclasses, however none of them has an impressive
SSP coefficient.
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• For the fourth order (s = 3) DC time discretization, there are two subgrid points inside
the interval [tn, tn+1]. By symmetry, these two points should be placed at t(1) = tn +a∆t

and t(2) = tn + (1 − a)∆t respectively for 0 < a < 1
2
. For example, the choice a = 5−

√
5

10

would generate the standard Chebyshev Gauss-Lobatto nodes.

A numerical optimization procedure can then be performed to search for the SSP scheme
with the largest SSP coefficient. Unfortunately, it again seems that negative β must
appear hence the operator F̃ must be used. A SSP scheme with 17 evaluations of F or
F̃ is found to have a SSP coefficient c = 1.0319. Several other fourth order SSP DC
schemes are also found in [60] within specific subclasses, however none of them has an
impressive SSP coefficient.

It would seem from the results in [60] that low order DC schemes are not competitive in
terms of SSP properties when comparing with Runge-Kutta methods. It would be interesting
to explore higher order DC schemes to see if there is any advantage there. The numerical
optimization procedure can be applied to DC schemes of any order to explore their SSP
property. The algebra and computational cost for this procedure become very complicated,
even for the fourth order methods considered in [60], if the traditional SSP theory is used.
However, the analysis is relatively straightforward using the theory of absolutely monotonic
methods, whose development we have reviewed in the present work.

Observe that the method (5.1)-(5.2) can be reinterpreted as a Runge-Kutta method. It
is easiest to write it in the Shu-Osher form. This involves nothing more than a change of
notation, relabeling u

(m)
k+1 as u(sk+m). Comparison of the two forms reveals that the non-zero

coefficients are

αi,i−1 = 1
βi,i−1 = ∆t(i−1)/∆t

}
1 ≤ i ≤ s

αsk+1,0 = 1
βsk+1,s(k−1)+i = C0

i /∆t

}
1 ≤ k ≤ s, 0 ≤ i ≤ s

αsk+m+1,sk+m = 1
βsk+m+1,s(k−1) = Cm

i /∆t

}
1 ≤ m ≤ s− 1, 1 ≤ k ≤ s, 0 ≤ i 6= m ≤ s

βsk+m+1,sk+m = θk∆t
(m)/∆t

βsk+m+1,s(k−1)+m = Cm
m/∆t− θk∆t

(m)/∆t

}
(1 ≤ k ≤ s; 1 ≤ m ≤ s− 1)

where

Im+1
m (L(uk)) =

s∑

i=0

Cm
i u

(i)
k .

Using this, we can immediately obtain the Butcher array (A, b) and consider the much simpler
problem of optimizing c(A, b) over the free parameters. For instance, for third order methods,
this leads to a two-parameter optimization problem; the same problem was written (after
some work) in terms of sixteen free parameters in [60]. For fourth order methods the current
approach leads to a six-parameter problem versus 69 parameters in [60].
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Noting that spectral DC methods can be written as explicit Runge-Kutta methods, we can
immediately conclude that downwind operators will be required in order for explicit spectral
DC methods to be SSP if they are of order greater than four. Similarly, implicit spectral DC
methods cannot be SSP without downwinding if their order exceeds six.

6 Conclusions

SSP time discretizations were introduced for use with spatial discretizations that are strongly
stable, under forward Euler time integration, for nonlinear hyperbolic PDEs with discon-
tinuous solutions. The numerical examples in Section 1.2 demonstrate that the theoretical
advantage of these methods provides a significant benefit in practice. The SSP theory has
benefitted from the recent discovery of its close relation to the theory of contractivity (see
Section 1.4). This connection has allowed a more complete and efficient study of SSP methods
with optimal SSP coefficient. Furthermore, contractivity theory allows us to conclude that
the SSP coefficient is not only sufficient but necessary for strong stability preservation in an
arbitrary norm for an arbitrary semi-discretization that satisfies a strong stability condition
under forward Euler integration. Thanks in large part to these theoretical advances, optimal
SSP methods of multistep and Runge-Kutta type have been thoroughly investigated, and their
development seems to be essentially complete.

In this paper we reviewed the state-of-the-art of SSP methods, and presented explicit
and implicit Runge-Kutta and multistep methods, and explicit spectral deferred correction
methods, as well as a bound on the SSP coefficient of all explicit general linear methods.
To date, low storage Runge-Kutta methods with extra stages [81, 72, 45] and the multistep
methods (with special starting conditions) of [73] have emerged as the most promising explicit
SSP methods in terms of allowable time-step and computational efficiency. Future work should
include further testing of these relatively new methods, in combination with different spatial
discretizations on a wide range of problems (for example, see [52] for a study of various SSP
Runge-Kutta methods combined with discontinuous Galerkin methods).

The SSP Runge-Kutta methods tend to have a variety of nice properties, such as small
error constants and large regions of absolute stability. The explicit methods have efficient low
storage implementations, and the implicit methods are singly diagonally implicit or diagonally
implicit. Furthermore, they have provable existence and uniqueness properties.

It has been demonstrated that implicit SSP methods are unlikely to be efficient enough
to out-perform the explicit methods. The very restrictive bound ceff ≤ 2 has been proven for
multistep methods [57, 41] and conjectured for Runge-Kutta methods [47]. Unconditionally
SSP methods have been found by looking beyond the class of general linear methods; however,
these have proven to be inaccurate in practice [62].

A promising area of future work is the study of explicit SSP general linear methods.
Efficient SSP methods of order greater than four are frequently desirable, particularly when
dealing with high order spatial discretizations. All explicit fifth order SSP Runge-Kutta meth-
ods (see [72]) require the use of downwind-biased operators, which is sometimes inconvenient;
high order SSP multistep methods are inefficient, and the more efficient higher order methods
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with special starting procedures seem not to work as well [73]. The higher order implicit
methods developed in [47] do not have a very large step-size and so are costly to implement
and may not be desirable for most applications. It is hoped that better high order methods
may be found by investigating the larger class of general linear methods, even considering the
bound on the step-size presented in Section 2.3. For a first effort in this direction, see [38].

Other promising areas of research include implicit general linear SSP methods, implicit-
explicit SSP methods, and the study of the SSP properties of other widely used numerical
methods. Implicit SSP general linear methods may provide an advantage over Runge-Kutta
or multistep methods by allowing a larger step-size [57, 47], while the development of implicit-
explicit methods whose explicit component is SSP [40] will be helpful in problems in which
the step-size is restricted by the diffusive component while the SSP condition is needed for
the convective component. For some types of time integration methods that are often applied
to hyperbolic PDEs, the SSP property has not been analyzed. We have reviewed the recent
analysis for the class of explicit spectral deferred correction methods in Section 5. Other types
of methods for which SSP results would be helpful include other types of deferred correction
methods, extrapolation methods, and exponential time differencing methods.
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