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Abstract

Strong stability preserving (SSP) time discretizations were devel-
oped for use with spatial discretizations of partial differential equa-
tions that are strongly stable under forward Euler time integration.
SSP methods preserve convex boundedness and contractivity proper-
ties satisfied by forward Euler, under a modified timestep restriction.
We turn to implicit Runge–Kutta methods to alleviate this timestep
restriction, and present implicit SSP Runge–Kutta methods which are
optimal in the sense that they preserve convex boundedness properties
under the largest timestep possible among all methods with a given
number of stages and order of accuracy. We consider methods up to
order six (the maximal order of SSP Runge–Kutta methods) and up
to eleven stages. The numerically optimal methods found are all di-
agonally implicit, leading us to conjecture that optimal implicit SSP
Runge–Kutta methods are diagonally implicit. These methods allow a
larger SSP timestep, compared to explicit methods of the same order
and number of stages. Numerical tests verify the order and the SSP
property of the methods.

∗Department of Applied Mathematics, University of Washington, Seattle, WA 98195-
2420 (ketch@amath.washington.edu). The work of this author was funded by a U.S. Dept.
of Energy Computational Science Graduate Fellowship.

†Department of Mathematics, Simon Fraser University, Burnaby, British Columbia,
V5A1S6 Canada (cbm@sfu.ca). The work of this author was partially supported by a
grant from NSERC Canada and a scholarship from the Pacific Institute of Mathematics
(PIMS).

‡Department of Mathematics, University of Massachusetts Dartmouth, North Dart-
mouth MA 02747. This work was supported by AFOSR grant number FA9550-06-1-0255

1



Optimal SSP methods 2

1 Strong Stability Preserving Runge–Kutta

Methods

Strong stability preserving (SSP) Runge–Kutta methods are high-order time
discretization methods that preserve the strong stability properties—in any
norm or semi-norm—satisfied by a spatial discretization of a system of par-
tial differential equations (PDEs) coupled with first-order forward Euler
timestepping [30, 28, 9, 10]. These methods were originally developed for
the numerical solution of hyperbolic PDEs to preserve the total variation
diminishing property satisfied by specially designed spatial discretizations
coupled with forward Euler integration.

In this work we are interested in approximating the solution of the ODE

ut = F (u), (1)

arising from the discretization of the spatial derivatives in the PDE

ut + f(u, ux, uxx, ...) = 0,

where the spatial discretization F (u) is chosen so that the solution obtained
using the forward Euler method

un+1 = un + ∆tF (un), (2)

satisfies the monotonicity requirement

||un+1|| ≤ ||un||,

in some norm, semi-norm or convex functional || · ||, for a suitably restricted
timestep

∆t ≤ ∆tFE.

If we write an explicit Runge–Kutta method in the now-standard Shu–
Osher form [30]

u(0) = un,

u(i) =
i−1
∑

k=0

(

αi,ku
(k) + ∆tβi,kF (u(k))

)

, αi,k ≥ 0, i = 1, . . . , s, (3)

un+1 = u(s),
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then consistency requires that
∑i−1

k=0 αi,k = 1. Thus, if αi,k ≥ 0 and βi,k ≥ 0,
all the intermediate stages u(i) in (3) are simply convex combinations of

forward Euler steps, each with ∆t replaced by
βi,k

αi,k
∆t. Therefore, any bound

on a norm, semi-norm, or convex functional of the solution that is satisfied
by the forward Euler method will be preserved by the Runge–Kutta method,
under the timestep restriction

βi,k

αi,k
∆t ≤ ∆tFE, or equivalently

∆t ≤ min
αi,k
βi,k

∆tFE, (4)

where the minimum is taken over all k < i and βi,k 6= 0.
These explicit SSP time discretizations can then be safely used with any

spatial discretization that satisfies the required stability property when cou-
pled with forward Euler.

Definition 1. [Strong stability preserving (SSP)] For ∆tFE > 0, let
F(∆tFE) denote the set of all pairs (F, ||·||) where the function F : R

m → R
m

and convex functional || · || are such that the numerical solution obtained by
the forward Euler method (2) satisfies ||un+1|| ≤ ||un|| whenever ∆t ≤ ∆tFE.
Given a Runge–Kutta method, the SSP coefficient of the method is the largest
constant c ≥ 0 such that, for all (F, || · ||) ∈ F(∆tFE), the numerical solution
given by (3) satisfies ||u(i)|| ≤ ||un|| (for 1 ≤ i ≤ s) whenever

∆t ≤ c∆tFE. (5)

If c > 0, the method is said to be strong stability preserving under the max-
imal timestep restriction (5).

A numerical method is said to be contractive if, for any two numerical
solutions u,v of (1) it holds that

||un+1 − vn+1|| ≤ ||un − vn||. (6)

Strong stability preserving methods are also of interest from the point of
view of preserving contractivity; in [4] it was shown that the SSP coefficient
is equal to the radius of absolute monotonicity, which was shown in [22]
to be the method-dependent factor in determining the largest timestep for
contractivity preservation.

If a particular spatial discretization coupled with the explicit forward
Euler method satisfies a strong stability property under some timestep re-
striction, then the implicit backward Euler method satisfies the same strong
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stability property, for any positive timestep [14]. However, all SSP Runge–
Kutta methods of order greater than one suffer from some timestep restriction
[10]. Much of the research in this field is devoted to finding methods that
are optimal in terms of their timestep restriction. For this purpose, various
implicit extensions and generalizations of the Shu–Osher form have been in-
troduced [10, 8, 6, 14]. The most general of these, and the form we use in
this paper, was introduced independently in [6] and [14]. We will refer to it
as the modified Shu–Osher form.

The necessity of a finite timestep restriction for strong stability preserva-
tion applies not only to Runge–Kutta methods, but also to linear multistep
and all general linear methods [31]. Diagonally split Runge–Kutta methods
lie outside this class and can be unconditionally contractive, but yield poor
accuracy for semi-discretizations of PDEs when used with large timesteps
[25].

Optimal implicit SSP Runge–Kutta methods with up to two stages were
found in [16]. Recently, this topic was also studied by Ferracina & Spijker
[7]; in that work, attention was restricted to the smaller class of singly di-
agonally implicit Runge–Kutta (SDIRK) methods. They present optimal
SDIRK methods of order p = 1 with any number of stages, order p = 2 with
two stages, order p = 3 with two stages, and order p = 4 with three stages.
They find numerically optimal methods of orders two to four and up to eight
stages. Based on these results, they conjecture the form of optimal SDIRK
methods for second- and third-order and any number of stages.

In this work we consider the larger class of all Runge–Kutta methods,
with up to eleven stages and sixth-order accuracy. Our search for new SSP
methods is facilitated by known results on contractivity and absolute mono-
tonicity of Runge–Kutta methods [31, 22] and their connection to strong
stability preservation [13, 14, 4, 6]. For a more detailed description of the
Shu–Osher form and the SSP property, we refer the interested reader to
[30, 9, 10, 29, 8, 20].

The structure of this paper is as follows. In Section 2 we use results from
contractivity theory to determine order barriers and other limitations on im-
plicit SSP Runge–Kutta methods. In Section 3, we present new numerically
optimal implicit Runge–Kutta methods of up to sixth order and up to eleven
stages, found by numerical optimization. A few of these numerically optimal
methods are also proved to be truly optimal. We note that the numerically
optimal implicit Runge–Kutta methods are all diagonally implicit, and those
of order two and three are singly diagonally implicit. In Section 4 we present
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numerical experiments using the numerically optimal implicit Runge–Kutta
methods, with a focus on verifying order of accuracy and the SSP timestep
limit. Finally, in Section 5 we summarize our results and discuss future
directions.

2 Barriers and Limitations on SSP Methods

The theory of strong stability preserving Runge–Kutta methods is very closely
related to the concepts of absolute monotonicity and contractivity [13, 14, 4,
6, 16]. In this section we review this connection and collect some results on
absolutely monotonic Runge–Kutta methods that allow us to draw conclu-
sions about the class of implicit SSP Runge–Kutta methods. To facilitate
the discussion, we first review two representations of Runge–Kutta methods.

2.1 Representations of Runge–Kutta Methods

An s-stage Runge–Kutta method is usually represented by its Butcher tableau,
consisting of an s× s matrix A and two s× 1 vectors b and c. The Runge–
Kutta method defined by these arrays is

yi = un + ∆t
s
∑

j=1

aijF
(

tn + cj∆t,y
j
)

, 1 ≤ i ≤ s, (7a)

un+1 = un + ∆t

s
∑

j=1

bjF
(

tn + cj∆t,y
j
)

. (7b)

It is convenient to define the (s+ 1) × s matrix

K =

(

A
bT

)

,

and we will also make the standard assumption ci =
∑s

j=1 aij . For the method
(7) to be accurate to order p, the coefficients K must satisfy order conditions
(see, e.g., [11]) denoted here by Φp(K) = 0.

A generalization of the Shu–Osher form (3) that applies to implicit as
well as explicit methods was introduced in [6, 14] to more easily study the
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SSP property. We will refer to this formulation as the modified Shu–Osher
form. Following the notation of [6], we introduce the coefficient matrices

λ =

[

λ0

λ1

]

, λ0 =







λ11 · · · λ1s
...

...
λs1 · · · λss






, λ1 = (λs+1,1, . . . , λs+1,s), (8a)

µ =

[

µ0

µ1

]

, µ0 =







µ11 · · · µ1s
...

...
µs1 · · · µss






, µ1 = (µs+1,1, . . . , µs+1,s). (8b)

These arrays define the method

yi =

(

1 −
s
∑

j=1

λij

)

un +

s
∑

j=1

λijy
j + ∆tµijF (tn + cj∆t,y

j), (1 ≤ i ≤ s),

(9a)

un+1 =

(

1 −
s
∑

j=1

λs+1,j

)

un +
s
∑

j=1

λs+1,jy
j + ∆tµs+1,jF (tn + cj∆t,y

j).

(9b)

Comparison of the Butcher representation (7) with the modified Shu–
Osher representation (9) reveals that the two are related by

µ = K − λA. (10)

Hence the Butcher form can be obtained explicitly from the modified Shu–
Osher form:

A = (I − λ0)
−1µ0,

bT = µ1 + λ1(I − λ0)
−1µ0.

Note that the modified Shu–Osher representation is not unique for a given
Runge–Kutta method. One particular choice, λ = 0 yields K = µ; i.e. the
Butcher form is a special case of the modified Shu–Osher form.

2.2 Strong Stability Preservation

The SSP coefficient turns out to be related to the radius of absolute mono-
tonicity R(K), introduced originally by Kraaijevanger [22]. This relationship
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was proved in [4, 13], where also a more convenient, equivalent definition of
R(K) was given:

Definition 2. [Radius of absolute monotonicity (of a Runge–Kutta
method)] The radius of absolute monotonicity R(K) of the Runge–Kutta
method defined by Butcher array K is the largest value of r ≥ 0 such that
(I + rA)−1 exists and

K(I + rA)−1 ≥ 0,

rK(I + rA)−1es ≤ es+1.

Here, the inequalities are understood component-wise and es denotes the s×1
vector of ones.

From [6, Theorem 3.4], we obtain:

Theorem 1. Let an irreducible Runge–Kutta method be given by the Butcher
array K. Let c denote the SSP coefficient from Definition 1. Let R(K) denote
the radius of absolute monotonicity defined in Definition 2. Then

c = R(K).

Furthermore, there exists a modified Shu–Osher representation (λ,µ) such
that (10) holds and

c = min
i,j;i6=j

λi,j
µi,j

,

where the minimum is taken over all µi,j 6= 0. In other words, the method
preserves strong stability under the maximal timestep restriction

∆t ≤ R(K)∆tFE.

For a definition of reducibility see, e.g., [6, Definition 3.1]. If we replace
the assumption of irreducibility in the Theorem with the assumption c <
∞, then the same results follow from [14, Propositions 2.1, 2.2 and 2.7].
Furthermore, the restriction c < ∞ is not unduly restrictive in the present
work because if c = ∞ then p = 1 [10], and we will be concerned only with
methods having p ≥ 2.

Although we are interested in strong stability preservation for general
(nonlinear, nonautonomous) systems, it is useful for the purposes of this
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section to introduce some concepts related to strong stability preservation
for linear autonomous systems.

When applied to a linear ODE

ut = λ̃u,

any Runge–Kutta method reduces to the iteration

un+1 = φ(∆tλ̃)un,

where φ is a rational function called the stability function of the Runge–Kutta
method. From [12, Section IV.3] we have the following equivalent expressions
for the stability function for implicit Runge–Kutta methods

φ(z) = 1 + zbT (I − zA)−1
e and φ(z) =

det(I − zA + zebT)

det(I − zA)
. (11)

Definition 3. [Strong stability preservation for linear systems] For
∆tFE > 0, let L(∆tFE) denote the set of all pairs (L, || · ||) where the matrix
L ∈ R

m×m and convex functional || · || are such that the numerical solution
obtained by forward Euler integration of the linear autonomous system of
ODEs ut = Lu satisfies ||un+1|| ≤ ||un|| whenever ∆t ≤ ∆tFE. Given a
Runge–Kutta method, the linear SSP coefficient of the method is the largest
constant clin ≥ 0 such that the numerical solution obtained with the Runge–
Kutta method satisfies ||un+1|| ≤ ||un|| for all (L, || · ||) ∈ L(∆tFE) whenever

∆t ≤ clin∆tFE. (12)

If clin > 0, the method is said to be strong stability preserving for linear
systems under the timestep restriction (12).

When solving a linear system of ODEs, the timestep restriction for strong
stability preservation depends on the radius of absolute monotonicity of φ.

Definition 4. [Radius of absolute monotonicity (of a function)] The
radius of absolute monotonicity of a function ψ, denoted by R(ψ), is the
largest value of r ≥ 0 such that ψ(x) and all of its derivatives exist and are
nonnegative for x ∈ (−r, 0].

The following result is due to Spijker [31]:
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Theorem 2. Let a Runge–Kutta method be given with stability function φ.
Let clin denote the linear SSP coefficient of the method (see Definition 3).
Then

clin = R(φ).

In other words, the method preserves strong stability for linear systems under
the maximal timestep restriction

∆t ≤ R(φ)∆tFE.

Because of this result, R(φ) is referred to as the threshold factor of the
method [31, 34]. Since L(h) ⊂ F(h), clearly c ≤ clin, so it follows that

R(K) ≤ R(φ). (13)

Optimal values of R(φ), for various classes of Runge–Kutta methods, can
be inferred from results found in [34], where the maximal value of R(ψ) was
studied for ψ belonging to certain classes of rational functions.

In the following section, we use this equivalence between the radius of
absolute monotonicity and the SSP coefficient to apply results regarding
R(K) to the theory of SSP Runge–Kutta methods.

2.3 Order Barriers for SSP Runge–Kutta Methods

The SSP property is a very strong requirement, and imposes severe restric-
tions on other properties of a Runge–Kutta method. We now review these
results and draw a few additional conclusions that will guide our search for
optimal methods in the next section.

Some results in this and the next section will deal with the optimal value
of R(K) when K ranges over some class of methods. This optimal value will
be denoted by RIRK

s,p (resp., RERK
s,p ) when K is permitted to be any implicit

(resp., explicit) Runge–Kutta method with at most s stages and at least
order p.

The result below follows from [31, Theorem 1.3] and equation (13) above.

Result 1. Any Runge–Kutta method of order p > 1 has a finite radius of
absolute monotonicity; i.e. RIRK

s,p <∞ for p > 1.

This is a disappointing result, which shows us that for SSP Runge–Kutta
methods of order greater than one we cannot avoid timestep restrictions
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altogether by using implicit methods (see also [10]). This is in contrast
with linear stability and B-stability, where some high-order implicit methods
(viz., the A-stable methods and the algebraically stable methods) have no
timestep restriction. However, this does not indicate how restrictive the step-
size condition is; it may still be worthwhile to consider implicit methods if
the radius of absolute monotonicity is large enough to offset the additional
work involved in an implicit solver.

From [22, Theorem 4.2] we can state the following result, which gives
lower bounds on the coefficients that are useful in numerical searches. It is
also useful in proving subsequent results.

Result 2. Any irreducible Runge–Kutta method with positive radius of abso-
lute monotonicity R(K) > 0, must have all non-negative coefficients A ≥ 0
and positive weights b > 0.

The following three results deal with the stage order p̃ of a Runge–Kutta
method. The stage order is a lower bound on the order of convergence when
a method is applied to arbitrarily stiff problems. Thus low stage order may
lead to slow convergence (i.e., order reduction) when computing solutions of
stiff ODEs. The stage order can be shown to be the largest integer p̃ such
that the simplifying assumptions B(p̃), C(p̃) hold, where these assumptions
are [3]

B(ξ) :

s
∑

j=1

bjc
k−1
j =

1

k
, (1 ≤ k ≤ ξ), (14a)

C(ξ) :
s
∑

j=1

aijc
k−1
j =

1

k
cki , (1 ≤ k ≤ ξ). (14b)

Result 3. [22, Theorem 8.5] A Runge–Kutta method with non-negative co-
efficients A ≥ 0 must have stage order p̃ ≤ 2. If p̃ = 2, then A must have a
zero row.

Result 4. [22, Lemma 8.6] A Runge–Kutta method with weights b > 0 must
have stage order p̃ ≥ ⌊p−1

2
⌋.

When dealing with explicit methods, stage order is limited whether or
not one requires non-negative coefficients [22, 2]:

Result 5. The stage order of an explicit Runge–Kutta method cannot exceed
p̃ = 1.
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For SSP methods, the stage order restriction leads to restrictions on the
classical order as well. Combining Results 2, 3, 4, and 5, we obtain:

Result 6. (see also [22, Corollary 8.7]) Any irreducible Runge–Kutta method
with R(K) > 0 has order p ≤ 4 if it is explicit and p ≤ 6 if it is implicit.
Furthermore, if p ≥ 5, then A has a zero row.

Result 6 shows that RERK
s,p = 0 for p > 4 and RIRK

s,p = 0 for p > 6. The
negative implications in Result 6 stem from the conditions A ≥ 0, b > 0
in Result 2. Non-negativity of A leads to low stage order (Result 3), while
positivity of b leads to a limit on the classical order (Result 4) relative to the
stage order. The result is a restriction on the classical order of SSP methods.

2.4 Barriers for Singly Implicit and Diagonally Im-
plicit Methods

An s-stage Runge–Kutta method applied to a system of m ODEs typically
requires the solution of a system of sm equations. When the system results
from the semi-discretization of a system of nonlinear PDEs, m is typically
very large and the system of ODEs is nonlinear, making the solution of this
system very expensive. Using a transformation involving the Jordan form of
A, the amount of work can be reduced [1]. This is especially efficient for singly
implicit (SIRK) methods (those methods for which A has only one distinct
eigenvalue), because the necessary matrix factorizations can be reused. On
the other hand, diagonally implicit (DIRK) methods, for which A is lower
triangular, can be implemented efficiently without transforming to the Jordan
form of A. The class of singly diagonally implicit (SDIRK) methods, which
are both singly implicit and diagonally implicit (i.e., A is lower triangular
with all diagonal entries identical), incorporate both of these advantages.
Note that in the literature the term diagonally implicit has sometimes been
used to mean singly diagonally implicit. We use RDIRK

s,p , RSIRK
s,p , and RSDIRK

s,p

to denote the optimal value of R(K) over each of the respective classes of
DIRK, SIRK, and SDIRK Runge–Kutta methods. Note that for a given
s and p, these three quantities are each bounded by RIRK

s,p . For details on
efficient implementation of implicit Runge–Kutta methods see, e.g., [3].

We now review some results regarding SSP methods in these classes.

Result 7. [7, Theorem 3.1] An SDIRK method with positive radius of ab-
solute monotonicity R(K) > 0 must have order p ≤ 4, i.e. RSDIRK

s,p = 0 for
p > 4.
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Proposition 1. The order of an s-stage DIRK method when applied to a
linear problem is at most s+ 1.

Proof. For a given s-stage DIRK method, let p denote its order and let φ
denote its stability function. Then φ(x) = exp(x) + O(xp+1) as x → 0. By
equation (11), φ is a rational function whose numerator has degree at most
s. For DIRK methods, A is lower triangular, so by equation (11) the poles of
φ are the diagonal entries of A, which are real. A rational function with real
poles only and numerator of degree s approximates the exponential function
to order at most s+ 1 [3, Theorem 3.5.11]. Thus p ≤ s + 1.

Proposition 2. The order of an s-stage SIRK method with positive radius
of absolute monotonicity is at most s+ 1. Hence RSIRK

s,p = 0 for p > s+ 1.

Proof. For a given s-stage SIRK method, let p denote its order and let φ
denote its stability function. Assume R(K) > 0; then by equation (13)
R(φ) > 0. By equation (11), φ is a rational function whose numerator has
degree at most s. For SIRK methods, equation (11) also implies that φ has a
unique pole. Since R(φ) > 0, [34, Corollary 3.4] implies that this pole must
be real. As in the proof above, [3, Theorem 3.5.11] then provides the desired
result.

Result 6 implies that all eigenvalues of A must be zero, hence the stability
function φ must be a polynomial. We thus have

Corollary 1. Consider the class of s-stage SIRK methods with order 5 ≤
p ≤ 6 and R(K) > 0. Let Πn,p denote the set of all polynomials ψ of degree
less than or equal to n satisfying ψ(x) = exp(x) + O(xp+1) as x → 0. Then
for 5 ≤ p ≤ 6,

RSIRK
s,p ≤ sup

ψ∈Πs,p

R(ψ).

where the supremum over an empty set is taken to be zero. Furthermore
RSIRK
s,p = 0 for 4 ≤ s < p ≤ 6.

The last statement of the Corollary follows from the observation that,
since a polynomial approximates exp(x) to order at most equal to its degree,
Πn,p is empty for p > s.

Corollary 1 implies that for s-stage SIRK methods of order p ≥ 5, R(K)
is bounded by the optimal linear SSP coefficient of s-stage explicit Runge–
Kutta methods of the same order (see [21, 17] for values of these optimal
coefficients).
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Family stages order R(K)
Gauss-Legendre 1 2 2
Radau IA 1 1 ∞
Radau IIA 1 1 ∞
Lobatto IIIA 2 2 2
Lobatto IIIB 2 2 2

Table 1: Values of R(K) for some well-known implicit methods.

2.5 Absolute monotonicity of some classical methods

When constructing high-order implicit Runge–Kutta methods it is common
to use the stage order conditions (14) as simplifying assumptions; however,
Result 3 implies that any method satisfying the conditions B(3) and C(3)
cannot be SSP. Examining the simplifying conditions satisfied by well-known
methods (see [3, Table 3.3.1]), one sees that this implies R(K) = 0 for the
Gauss-Legendre, Radau IIA, and Lobatto IIIA methods with more than two
stages, the Radau IA and Lobatto IIIC methods with more than three stages,
and the Lobatto IIIB methods with more than four stages. Checking the signs
of the Butcher arrays of the remaining (low stage number) methods in these
families, by Result 2 we obtain that only the one-stage Gauss-Legendre,
Radau IA, Radau IIA, and the two-stage Lobatto IIIA and Lobatto IIIB
methods can have R(K) different from zero. The values of R(K) for these
methods are listed in Table 1.

3 Optimal SSP Implicit Runge–Kutta Meth-

ods

In this section we present numerically optimal implicit SSP Runge–Kutta
methods for nonlinear systems of ODEs. These methods were found via
numerical search, and in general we have no analytic proof of their optimality.
In a few cases, we have employed Baron, an optimization software package
that provides a numerical certificate of global optimality [27]. Baron was
used to find optimal explicit SSP Runge–Kutta methods in [24, 26]. However,
this process is computationally expensive and was not practical in most cases.

Most of the methods were found using Matlab’s optimization toolbox.
We applied the same computational approach to finding numerically optimal
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explicit and diagonally implicit SSP Runge–Kutta methods, and successfully
found a solution at least as good as the previously best known solution in
every case. Because our approach was able to find these previously known
methods, we expect that some of new methods—particularly those of lower-
order or lower number of stages—may be globally optimal.

The optimization problem for general Runge–Kutta methods involves ap-
proximately twice as many decision variables (dimensions) as the explicit
or singly diagonally implicit cases, which have previously been investigated
[9, 10, 32, 33, 26, 7]. Despite the larger number of decision variables, we
have been able to find numerically optimal methods even for large numbers
of stages. We attribute this success to the reformulation of the optimization
problem in terms of the Butcher coefficients rather than the Shu–Osher co-
efficients, as suggested in [5]. Specifically, we solve the optimization problem

max
K

r, (15a)

subject to











K(I + rA)−1 ≥ 0,

rK(I + rA)−1es ≤ es+1,

Φp(K) = 0,

(15b)

where the inequalities are understood component-wise and recall that Φp(K)
represents the order conditions up to order p. This formulation, implemented
in Matlab using a sequential quadratic programming approach (fmincon in
the optimization toolbox), was used to find the methods given below. In
a concurrent effort, this formulation has been used to search for optimal
explicit SSP methods [17].

Because in most cases we cannot prove the optimality of the resulting
methods, we use hats to denote the best value found by numerical search,
e.g. R̂IRK

s,p , etc.
The above problem can be reformulated (using a standard approach for

converting rational constraints to polynomial constraints) as

max
K,µ

r, (16a)

subject to



















µ ≥ 0,

rµes ≤ es+1,

K = µ(I + rA),

Φp(K) = 0.

(16b)
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This optimization problem has only polynomial constraints and thus is appro-
priate for the Baron optimization software which requires such constraints
to be able to guarantee global optimality [27]. Note that µ in (16) corre-
sponds to one possible modified Shu–Osher form with λ = rµ.

In comparing methods with different numbers of stages, one is usually
interested in the relative time advancement per computational cost. For
diagonally implicit methods, the computational cost per time-step is pro-
portional to the number of stages. We therefore define the effective SSP
coefficient of a method as R(K)

s
; this normalization enables us to compare the

cost of integration up to a given time using DIRK schemes of order p > 1.
However, for non-DIRK methods of various s, it is much less obvious how to
compare computation cost.

In the following, we give modified Shu–Osher arrays for the numerically
optimal methods. To simplify implementation, we present modified Shu–
Osher arrays in which the diagonal elements of λ are zero. This form is a
simple rearrangement and involves no loss of generality.

3.1 Second-order Methods

Optimizing over the class of all (s ≤ 11)-stage second-order implicit Runge–
Kutta methods we found that the numerically optimal methods are, remark-
ably, identical to the numerically optimal SDIRK methods found in [5, 7].
This result stresses the importance of the second-order SDIRK methods
found in [5, 7]: they appear to be optimal not only among SDIRK meth-
ods, but also among the larger class of all implicit Runge–Kutta methods.

These methods are most advantageously implemented in a certain mod-
ified Shu–Osher form. This is because these arrays (if chosen carefully) are
more sparse. In fact, for these methods there exist modified Shu–Osher ar-
rays that are bidiagonal. We give the general formulae here.

The numerically optimal second-order method with s stages has R(K) =
2s and coefficients

λ =















0
1 0

1
. . .
. . . 0

1















, µ =















1
2s
1
2s

1
2s

1
2s

. . .

. . . 1
2s
1
2s















. (17)
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The one-stage method of this class is the implicit midpoint rule, while
the s-stage method is equivalent to s successive applications of the implicit
midpoint rule (as was observed in [5]). Thus these methods inherit the de-
sirable properties of the implicit midpoint rule such as algebraic stability
and A-stability [12]. Of course, since they all have the same effective SSP
coefficient R(K)/s = 2, they are all essentially equivalent.

The one-stage method is the unique method with s = 1, p = 2 and hence
is optimal. The two-stage method achieves the maximum radius of absolute
monotonicity for rational functions that approximate the exponential to sec-
ond order with numerator and denominator of degree at most two, hence it
is optimal to within numerical precision [34, 16, 7]. In addition to duplicat-
ing these optimality results, Baron was used to numerically prove that the
s = 3 scheme is globally optimal, verifying [7, Conjecture 3.1] for the case
s = 3. The s = 1 and s = 2 cases required only several seconds but the s = 3
case took much longer, requiring approximately 11 hours of CPU time on an
Athlon MP 2800+ processor.

While the remaining methods have not been proven optimal, it appears
likely that they may be. From multiple random initial guesses, the optimiza-
tion algorithm consistently converges to the same method, or to a reducible
method corresponding to one of the numerically optimal methods with a
smaller number of stages. Also, many of the inequality constraints are satis-
fied exactly for these methods. Furthermore, the methods all have a similar
form, depending only on the stage number. These observations suggest:

Conjecture 1. (An extension of [7, Conjecture 3.1]) The optimal second-
order s-stage implicit SSP method is given by the SDIRK method (17) and
hence RIRK

s,2 = 2s.

This conjecture would imply that the effective SSP coefficient of any
Runge–Kutta method of order greater than one is at most equal to two.

3.2 Third-order Methods

The numerically optimal third-order implicit Runge–Kutta methods with
s ≥ 2 stages are also SDIRK and identical to the numerically optimal SDIRK
methods found in [5, 7], which have R(K) = s − 1 +

√
s2 − 1. Once again,

these results indicate that the methods found in [5, 7] are likely optimal over
the entire class of implicit Runge–Kutta methods.
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In this case, too, when implementing these methods it is possible to use
bidiagonal Shu–Osher arrays. For p = 3 and s ≥ 2 the numerically optimal
methods have coefficients

µ =















µ11

µ21
. . .
. . . µ11

µ21 µ11

µs+1,s















, λ =















0

1
. . .
. . . 0

1 0
λs+1,s















, (18a)

where

µ11 =
1

2

(

1 −
√

s− 1

s+ 1

)

, µ21 =
1

2

(

√

s+ 1

s− 1
− 1

)

, (18b)

µs+1,s =
s+ 1

s(s+ 1 +
√
s2 − 1)

, λs+1,s =
(s+ 1)(s− 1 +

√
s2 − 1)

s(s+ 1 +
√
s2 − 1)

. (18c)

The two-stage method in this family achieves the maximum value of R(φ)
found in [34] for φ in the set of third-order rational approximations to the
exponential with numerator and denominator of degree at most 2. Since the
corresponding one-parameter optimization problem is easy to solve, then (in
view of (13)) the method is clearly optimal to within numerical precision.
Baron was used to numerically prove global optimality for the three-stage
method (18), requiring about 12 hours of CPU time on an Athlon MP 2800+
processor. Note that this verifies [7, Conjecture 3.2] for the case s = 3.

While the remaining methods (those with s ≥ 4) have not been proven
optimal, we are again led to suspect that they may be, because of the nature
of the optimal methods and the convergent behavior of the optimization
algorithm for these cases. These observations suggest:

Conjecture 2. (An extension of [7, Conjecture 3.2]) For s ≥ 2, the optimal
third-order s-stage implicit Runge–Kutta SSP method is given by the SDIRK
method (18) and hence RIRK

s,3 = s− 1 +
√
s2 − 1.

3.3 Fourth-order Methods

Based on the above results, one might suspect that all optimal implicit SSP
methods are singly diagonally implicit. In fact, this cannot hold for p ≥ 5



Optimal SSP methods 18

since in that case A must have a zero row (see Result 6 above). The nu-
merically optimal methods of fourth-order are not singly diagonally implicit
either; however, all numerically optimal fourth-order methods we have found
are diagonally implicit.

The unique two-stage fourth-order Runge–Kutta method has a negative
coefficient and so is not SSP. Thus we begin our search with three-stage
methods. We list the SSP coefficients and effective SSP coefficients of the
numerically optimal methods in Table 2. For comparison, the table also lists
the effective SSP coefficients of the numerically optimal SDIRK methods
found in [7]. Our numerically optimal DIRK methods have larger SSP coef-
ficients in every case. Furthermore, they have representations that allow for
very efficient implementation in terms of storage. However, SDIRK methods
may be implemented in a potentially more efficient (in terms of computation)
manner than DIRK methods. An exact evaluation of the relative efficiencies
of these methods is beyond the scope of this work. The coefficients of the
4-stage method are included in Table 7. The coefficients of the remaining
methods are available from [19, 18].

Baron was run on the three-stage fourth-order case but was unable to
prove the global optimality of the resulting method using 14 days of CPU
time on an Athlon MP 2800+ processor. However, during that time Baron

did establish an upper bound RIRK
3,4 ≤ 3.234. Baron was not run on any

other fourth-order cases, nor was it used for p = 5 or p = 6.
Although none of the fourth-order methods are proven optimal, it appears

that they may be optimal. This is again because the optimization algorithm
is able to converge to these methods from a range of random initial guesses,
and because very many of the inequality constraints are satisfied exactly
for these methods. Additionally, we were able to recover all of the optimal
fourth-order SDIRK methods of [7] by restricting our search to the space of
SDIRK methods.

3.4 Fifth- and Sixth-order Methods

We have found fifth- and sixth-order SSP methods with up to eleven stages.
Two sets of numerical searches were conducted, corresponding to optimiza-
tion over the full class of implicit Runge–Kutta methods and optimization
over the subclass of diagonally implicit Runge–Kutta methods. More CPU
time was devoted to the first set of searches; however, in most cases the best
methods we were able to find resulted from the searches restricted to DIRK
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s R̂IRK
s,4 R̂SDIRK

s,4 R̂IRK
s,4 /s R̂SDIRK

s,4 /s

3 2.05 1.76 0.68 0.59
4 4.42 4.21 1.11 1.05
5 6.04 5.75 1.21 1.15
6 7.80 7.55 1.30 1.26
7 9.19 8.67 1.31 1.24
8 10.67 10.27 1.33 1.28
9 12.04 1.34

10 13.64 1.36
11 15.18 1.38

Table 2: SSP coefficients and effective SSP coefficients of numerically optimal
fourth-order implicit Runge–Kutta methods and SDIRK methods.

methods. Furthermore, when searching over fully implicit methods, in every
case for which the optimization algorithm successfully converged to a (lo-
cal) optimum, the resulting method was diagonally implicit. Thus all of the
numerically optimal methods found are diagonally implicit.

Because better results were obtained in many cases by searching over a
strictly smaller class of methods, it seems likely that the methods found are
not globally optimal. This is not surprising because the optimization prob-
lems involved are highly nonlinear with many variables, many constraints,
and multiple local optima. The application of more sophisticated software
to this problem is an area of future research. Nevertheless, the observation
that all converged solutions correspond to DIRK methods leads us to believe
that the globally optimal methods are likely to be DIRK methods.

Typically, an optimization algorithm may be expected to fail for suffi-
ciently large problems (in our case, sufficiently large values of s). However,
we found that the cases of relatively small s and large p (i.e., p = 5 and s < 6
or p = 6 and s < 9) also posed great difficulty. This may be because the
feasible set in these cases is extremely small. The methods found in these
cases were found indirectly by searching for methods with more stages and
observing that the optimization algorithm converged to a reducible method.
Due to the high nonlinearity of the problem for p ≥ 5, we found it help-
ful to explicitly limit the step sizes used by fmincon in the final steps of
optimization.
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s R̂IRK
s,5 RSIRK

s,5 R̂IRK
s,5 /s RSIRK

s,5 /s
(upper bound) (upper bound)

4 1.14 0.29
5 3.19 1.00 0.64 0.20
6 4.97 2.00 0.83 0.33
7 6.21 2.65 0.89 0.38
8 7.56 3.37 0.94 0.42
9 8.90 4.10 0.99 0.46
10 10.13 4.83 1.01 0.48
11 11.33 5.52 1.03 0.50

Table 3: Comparison of SSP coefficients of numerically optimal fifth-order
IRK methods with theoretical upper bounds on SSP coefficients of fifth-order
SIRK methods.

3.4.1 Fifth-order Methods

Three stages Using the W transformation [3] we find the one parameter
family of three-stage, fifth-order methods

A =





5
36
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γ 5
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+ 1
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15 − 5

18
γ 5
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√
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√
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+ 1
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√
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9
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5
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√
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9
γ 5

36
− 1

24

√
15 − 5

18
γ 5

36
+ 2

9
γ



 .

It is impossible to choose γ so that a21 and a31 are simultaneously nonnega-
tive, so there are no SSP methods in this class.

Four to Eleven stages We list the time-step coefficients and effective
SSP coefficients of the numerically optimal fifth order implicit Runge–Kutta
methods for 4 ≤ s ≤ 11 in Table 3. It turns out that all of these methods
are diagonally implicit.

For comparison, we also list the upper bounds on effective SSP coefficients
of SIRK methods in these classes implied by combining Corollary 1 with [17,
Table 2.1]. Our numerically optimal IRK methods have larger effective SSP
coefficients in every case. The coefficients of the optimal five-stage method
are listed in Table 8. Coefficients of the remaining methods are available
from [19, 18].
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s R̂IRK
s,6 R̂IRK

s,6 /s

6 0.18 0.030
7 0.26 0.038
8 2.25 0.28
9 5.80 0.63
10 8.10 0.81
11 8.85 0.80

Table 4: Radii of absolute monotonicity and effective SSP coefficients for
numerically optimal sixth-order methods.

3.4.2 Sixth-order Methods

Kraaijevanger [22] proved the bound p ≤ 6 for contractive methods (see Re-
sult 6 above) and presented a single fifth-order contractive method, leaving
the existence of sixth-order contractive methods as an open problem. The
sixth-order methods we have found settle this problem, demonstrating that
the order barrier p ≤ 6 for implicit SSP/contractive methods is sharp.

The non-existence of three-stage SSP Runge–Kutta methods of fifth-
order, proved above, implies that sixth-order SSP Runge–Kutta methods
must have at least four-stages. Proposition 1 implies that sixth-order SSP
DIRK methods must have at least five stages, and Corollary 1 shows that
sixth-order SSP SIRK methods require at least six stages. We were unable
to find sixth-order SSP Runge–Kutta methods with fewer than six stages.

The SSP coefficients and effective SSP coefficients of the numerically op-
timal methods for 6 ≤ s ≤ 11 are listed in Table 4. All of these methods are
diagonally implicit. The coefficients of the optimal nine-stage method are
listed in Table 9. Coefficients of the remaining methods are available from
[19, 18]. We were unable to find an eleven-stage method with larger effective
SSP coefficient than that of the ten-stage method (although we did find a
method with larger R(K)).

Table 5 summarizes the effective SSP coefficients of the numerically op-
timal diagonally implicit methods for 2 ≤ p ≤ 6 and 2 ≤ s ≤ 11. For
comparison, Table 5 also includes the effective SSP coefficients of the best
known explicit methods, including results from the forthcoming paper [17].
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H
H

H
H

H
H

s
p Implicit Methods Explicit Methods

2 3 4 5 6 2 3 4
1 2 - - - - - - -
2 2 1.37 - - - 0.5 - -
3 2 1.61 0.68 - - 0.67 0.33 -
4 2 1.72 1.11 0.29 0.75 0.5 -
5 2 1.78 1.21 0.64 0.8 0.53 0.30
6 2 1.82 1.30 0.83 0.030 0.83 0.59 0.38
7 2 1.85 1.31 0.89 0.038 0.86 0.61 0.47
8 2 1.87 1.33 0.94 0.28 0.88 0.64 0.52
9 2 1.89 1.34 0.99 0.63 0.89 0.67 0.54
10 2 1.90 1.36 1.01 0.81 0.9 0.68 0.60
11 2 1.91 1.38 1.03 0.80 0.91 0.69 0.59

Table 5: Effective SSP coefficients of best known methods. A dash indicates
that SSP methods of this type cannot exist. A blank space indicates that no
SSP methods of this type were found.

4 Numerical Experiments

We begin our numerical examples with a convergence study on a linear ad-
vection problem with smooth initial conditions. We then proceed to show
the effect of the linear SSP coefficient for this linear advection problem with
discontinuous initial conditions. Finally, the effect of the SSP coefficient
is demonstrated on the nonlinear Burgers’ and Buckley–Leverett equations.
The computations in Section 4.1 were performed with Matlab version 7.1
on a Mac G5; those in Sections 4.2 and 4.3 were performed with Matlab

version 7.3 on x86-64 architecture. All calculations were performed in dou-
ble precision. For the implicit solution of linear problems we used Matlab’s
backslash operator, while for the nonlinear implicit solves we used the fsolve

function with very small tolerances.
We refer to the numerically optimal methods as SSPsp where s, p are

the number of stages and order, respectively. For instance, the numerically
optimal eight-stage method of order five is SSP85.
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4.1 Linear Advection

The prototypical hyperbolic PDE is the linear wave equation,

ut + aux = 0, 0 ≤ x ≤ 2π. (19)

We consider (19) with a = −2π, periodic boundary conditions and vari-
ous initial conditions. We use a method-of-lines approach, discretizing the
interval (0, 2π] into m points xj = j∆x, j = 1, . . . , m, and then discretiz-
ing −aux with first-order upwind finite differences. We solve the resulting
system (1) using our timestepping schemes. To isolate the effect of the time-
discretization error, we exclude the effect of the error associated with the
spatial discretization by comparing the numerical solution to the exact solu-
tion of the ODE system, rather than to the exact solution of the PDE (19). In
lieu of the exact solution we use a very accurate numerical solution obtained
using Matlab’s ode45 solver with minimal tolerances (AbsTol = 1 × 10−14,
RelTol = 1 × 10−13).

Figure 1 shows a convergence study for various numerically optimal schemes
for the problem (19) with m = 120 points in space and smooth initial data

u(0, x) = sin(x),

advected until final time tf = 1. Here σ indicates the size of the timestep:
∆t = σ∆tFE. The results show that all the methods achieve their design
order.

Now consider the advection equation with discontinuous initial data

u(x, 0) =

{

1 if π
2
≤ x ≤ 3π

2
,

0 otherwise.
(20)

Figure 2 shows a convergence study for the third-order methods with s = 3
to s = 8 stages, for tf = 1 using m = 64 points and the first-order upwinding
spatial discretization. Again, the results show that all the methods achieve
their design order. Finally, we note that the higher-stage methods give a
smaller error for the same timestep; that is as s increases, the error constant
of the method decreases.

Figure 3 shows the result of solving the discontinuous advection example
using the two-stage third-order method over a single timestep with m = 200.
For this linear autonomous system, the theoretical monotonicity-preserving
timestep bound is σ ≤ clin = 2.732. We see that as the timestep is increased,
the line steepens and forms a small step, which becomes an oscillation as the
stability limit is exceeded, and worsens as the timestep is raised further.
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Figure 1: Convergence of various numerically optimal SSP methods for linear
advection of a sine wave.
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Figure 2: Convergence of third-order methods for linear advection of a square
wave.
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Figure 3: Solution of the linear advection problem after one timestep with
the two-stage third-order method (clin = 2.732).
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Figure 4: Solution of Burgers’ equation using the third-order, five-stage SSP
timestepping method (c = 8.90).

4.2 Burgers’ Equation

In this section we consider the inviscid Burgers’ equation, which consists of
the conservation law

ut + f(u)x = 0 (21)

with flux function f(u) = 1
2
u2. We take initial conditions u(0, x) = 1

2
−

1
4
sin(πx) on the periodic domain x ∈ [0, 2). The solution is right-travelling

and over time steepens into a shock. We discretize −f(u)x using the conser-
vative upwind approximation

−f(u)x ≈ − 1

∆x
(f(ui) − f(ui−1)) . (22)

with m = 256 points in space and integrate to time tf = 2. The conver-
gence study in Figure 5 shows that the fourth-, fifth- and sixth-order s-stage
methods achieve their respective orders of convergence when compared to a
temporally very refined solution of the discretized system.

Figure 4 shows that when the timestep is below the stability limit no
oscillations appear, but when the stability limit is violated, oscillations are
observed.
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Figure 5: Convergence of the numerically optimal fourth-, fifth- and sixth-
order schemes on Burgers’ equation. The solid circles indicate σ = c for each
scheme.
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4.3 Buckley–Leverett Equation

The Buckley–Leverett equation is a model for two-phase flow through porous
media [23] and consists of the conservation law (21) with flux function

f(u) =
u2

u2 + a(1 − u)2
.

We take a = 1
3

and initial conditions

u(x, 0) =

{

1 if x ≤ 1
2
,

0 otherwise,

on x ∈ [0, 1) with periodic boundary conditions. Our spatial discretization
uses m = 100 points and we use the conservative scheme with Koren limiter
used in [7] and [15, Section III.1]. The nonlinear system of equations for each
stage of the Runge–Kutta method is solved with Matlab’s fsolve, with the
Jacobian approximated [15] by that of the first-order upwind discretization
(22). We compute the solution for n =

⌈

1
8

1
∆t

⌉

timesteps.
For this problem, as in [7], we find that the forward Euler solution is

total variation diminishing (TVD) for ∆t ≤ ∆tFE = 0.0025. Figure 6 shows
typical solutions for the SSP(1,2) scheme with timestep ∆t = σ∆tFE. Table 6
compares the SSP coefficient R(K) with σBL = ∆tRK/∆tFE, where ∆tRK is
the largest observed timestep for which the numerical solution obtained with
the Runge–Kutta method is TVD. We note that, for each method, the value
of σBL is greater than the SSP coefficient. In fact, at least for either lower
order p or high number of stages s, the values are in good correspondence.
For p = 2 and p = 3, our results agree with those of [7].

5 Conclusions and Future Work

By numerical optimization we have found implicit strong stability preserving
Runge–Kutta methods of order up to the maximum possible of p = 6 and
stages up to s = 11. Methods with up to three stages and third order of
accuracy have been proven optimal by analysis or by the global optimization
software package Baron. Remarkably, the numerically optimal methods of
up to third-order are singly diagonally implicit, and the numerically optimal
methods of all orders are diagonally implicit. Furthermore, all of the local op-
tima found in our searches correspond to diagonally implicit methods. Based
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Figure 6: Solution of the Buckley–Leverett equation using the second-order,
one-stage SSP timestepping method (c = 2).

H
H

H
H

HH
s

p R(K) σBL

2 3 4 5 6 2 3 4 5 6

1 2 - - - - 2.03 - - - -
2 4 2.73 - - - 4.08 3.68 - - -
3 6 4.83 2.05 - - 6.11 5.39 4.01 - -
4 8 6.87 4.42 1.14 8.17 7.13 5.59 4.04
5 10 8.90 6.04 3.21 10.25 9.06 6.46 4.91
6 12 10.92 7.80 4.97 0.18 12.33 11.18 7.98 6.92 4.83
7 14 12.93 9.19 6.21 0.26 14.43 13.33 9.31 9.15 5.14
8 16 14.94 10.67 7.56 2.25 16.53 15.36 11.42 8.81 5.66
9 18 16.94 12.04 8.90 5.80 18.60 17.52 15.01 11.04 7.91
10 20 18.95 13.64 10.13 8.10 20.66 19.65 13.84 12.65 10.80
11 22 20.95 15.18 11.33 8.85 22.77 21.44 15.95 14.08 11.82

Table 6: SSP coefficients versus largest timesteps exhibiting the TVD prop-
erty on the Buckley–Leverett example.
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on these results, we conjecture that the optimal implicit SSP Runge–Kutta
methods of any number of stages are diagonally implicit. Future work may
involve numerical experiments with more powerful numerical optimization
software, which will allow us to search more thoroughly and among methods
with more stages to support this conjecture.

The likelihood that our numerically optimal methods are nearly or truly
optimal can be inferred to some extent from the behavior of Matlab’s opti-
mization toolbox. For the methods of up to fourth-order, the software is able
to repeatedly converge to the optimal solution from a wide range of initial
guesses. Hence we expect that these methods are optimal, or very nearly so.
For methods of fifth- and sixth-order, the behavior of Matlab’s toolbox is
more erratic and it is difficult to determine how close to optimal the methods
are. By comparing them with methods of the same number of stages and
lower order, however, we see that in most cases the SSP coefficients of the
globally optimal methods cannot be dramatically larger than those we have
found.

Numerical experiments confirm the theoretical properties of these meth-
ods. The implicit SSP Runge–Kutta methods we found have SSP coefficients
significantly larger than those of optimal explicit methods for a given num-
ber of stages and order of accuracy. Furthermore, we have provided implicit
methods of orders five and six, whereas explicit methods can have order at
most four. However, these advantages in accuracy and timestep restriction
must be weighed against the cost of solving the implicit set of equations.
In the future we plan to compare in practice the relative efficiency of these
methods with explicit methods.
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A Coefficients of Some Optimal Methods

µ11 = 0.119309657880174

µ21 = 0.226141632153728

µ22 = 0.070605579799433

µ32 = 0.180764254304414

µ33 = 0.070606483961727

µ43 = 0.212545672537219

µ44 = 0.119309875536981

µ51 = 0.010888081702583

µ52 = 0.034154109552284

µ54 = 0.181099440898861

λ21 = 1

λ32 = 0.799340893504885

λ43 = 0.939878564212065

λ51 = 0.048147179264990

λ52 = 0.151029729585865

λ54 = 0.800823091149145

Table 7: Non-zero coefficients of the optimal 4-stage method of order 4.

µ21 = 0.107733237609082

µ22 = 0.107733237609079

µ31 = 0.000009733684024

µ32 = 0.205965878618791

µ33 = 0.041505157180052

µ41 = 0.010993335656900

µ42 = 0.000000031322743

µ43 = 0.245761367350216

µ44 = 0.079032059834967

µ51 = 0.040294985548405

µ52 = 0.011356303341111

µ53 = 0.024232322953809

µ54 = 0.220980752503271

µ55 = 0.098999612937858

µ63 = 0.079788022937926

µ64 = 0.023678103998428

µ65 = 0.194911604040485

λ21 = 0.344663606249694

λ31 = 0.000031140312055

λ32 = 0.658932601159987

λ41 = 0.035170229692428

λ42 = 0.000000100208717

λ43 = 0.786247596634378

λ51 = 0.128913001605754

λ52 = 0.036331447472278

λ53 = 0.077524819660326

λ54 = 0.706968664080396

λ63 = 0.255260385110718

λ64 = 0.075751744720289

λ65 = 0.623567413728619

Table 8: Non-zero coefficients of the optimal 5-stage method of order 5.

µ21 = 0.060383920365295

µ22 = 0.060383920365140

µ31 = 0.000000016362287

µ32 = 0.119393671070984

µ33 = 0.047601859039825

µ42 = 0.000000124502898

µ43 = 0.144150297305350

µ44 = 0.016490678866732

µ51 = 0.014942049029658

µ52 = 0.033143125204828

µ53 = 0.020040368468312

µ54 = 0.095855615754989

µ55 = 0.053193337903908

µ61 = 0.000006536159050

µ62 = 0.000805531139166

µ63 = 0.015191136635430

µ64 = 0.054834245267704

µ65 = 0.089706774214904

µ71 = 0.000006097150226

µ72 = 0.018675155382709

µ73 = 0.025989306353490

µ74 = 0.000224116890218

µ75 = 0.000125522781582

µ76 = 0.125570620920810

µ77 = 0.019840674620006

µ81 = 0.000000149127775

µ82 = 0.000000015972341

µ83 = 0.034242827620807

µ84 = 0.017165973521939

µ85 = 0.000000000381532

µ86 = 0.001237807078917

µ87 = 0.119875131948576

µ88 = 0.056749019092783

µ91 = 0.000000072610411

µ92 = 0.000000387168511

µ93 = 0.000400376164405

µ94 = 0.000109472445726

µ95 = 0.012817181286633

µ96 = 0.011531979169562

µ97 = 0.000028859233948

µ98 = 0.143963789161172

µ99 = 0.060174596046625

µ10,1 = 0.001577092080021

µ10,2 = 0.000008909587678

µ10,3 = 0.000003226074427

µ10,4 = 0.000000062166910

µ10,5 = 0.009112668630420

µ10,6 = 0.008694079174358

µ10,7 = 0.017872872156132

µ10,8 = 0.027432316305282

µ10,9 = 0.107685980331284

λ21 = 0.350007201986739

λ31 = 0.000000094841777

λ32 = 0.692049215977999

λ42 = 0.000000721664155

λ43 = 0.835547641163090

λ51 = 0.086609559981880

λ52 = 0.192109628653810

λ53 = 0.116161276908552

λ54 = 0.555614071795216

λ61 = 0.000037885959162

λ62 = 0.004669151960107

λ63 = 0.088053362494510

λ64 = 0.317839263219390

λ65 = 0.519973146034093

λ71 = 0.000035341304071

λ72 = 0.108248004479122

λ73 = 0.150643488255346

λ74 = 0.001299063147749

λ75 = 0.000727575773504

λ76 = 0.727853067743022

λ81 = 0.000000864398917

λ82 = 0.000000092581509

λ83 = 0.198483904509141

λ84 = 0.099500236576982

λ85 = 0.000000002211499

λ86 = 0.007174780797111

λ87 = 0.694839938634174

λ91 = 0.000000420876394

λ92 = 0.000002244169749

λ93 = 0.002320726117116

λ94 = 0.000634542179300

λ95 = 0.074293052394615

λ96 = 0.066843552689032

λ97 = 0.000167278634186

λ98 = 0.834466572009306

λ10,1 = 0.009141400274516

λ10,2 = 0.000051643216195

λ10,3 = 0.000018699502726

λ10,4 = 0.000000360342058

λ10,5 = 0.052820347381733

λ10,6 = 0.050394050390558

λ10,7 = 0.103597678603687

λ10,8 = 0.159007699664781

λ10,9 = 0.624187175011814

Table 9: Non-zero coefficients of the optimal 9-stage method of order 6.


