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1 Introduction

Many important physical phenomena are governed by hyperbolic systems of
conservation laws

qt + f(q)x = 0, (1)

for which a wide range of numerical methods have been developed. In this
paper we present a numerical method for solution of (1) that is also applicable
to general hyperbolic systems of the form

qt + A(q, x, t)qx = 0. (2)

In the nonlinear, nonconservative case, the method may be applied if the
structure of the Riemann solution is understood. Examples of (1-2) include
acoustics and elasticity in heterogeneous media. Wave-propagation methods of
up to second order accuracy have been developed and applied to such systems
([4, 5]).

Many high order accurate methods for solution of (1) have been developed,
including the essentially non-oscillatory (ENO) and weighted ENO (WENO)
schemes. Such methods rely on calculating fluxes, and may not be applied to
the more general system (2).

The method described in this work combines the notions of wave propaga-
tion and the method of lines, and can in principle be extended to arbitrarily
high order accuracy by the use of high order accurate spatial reconstruction
and a high order accurate ODE solver. In this work, we use Runge-Kutta
methods.

The method is implemented in a software package, WENOCLAW, that is
based on CLAWPACK [6] and makes use of Riemann solvers in the same form
required for CLAWPACK. The software package and additional documenta-
tion are freely available at

http://www.amath.washington.edu/~claw/



2 David I. Ketcheson and Randall J. LeVeque

2 One-dimensional Discretization

2.1 Semi-discretization

Many numerical methods have been developed to approximately solve (1)
based on Godunov’s method. The method relies on solving Riemann problems,
which consist of (2) with piecewise constant initial data

q(x, 0) = q0(x) =

{

q− if x < 0
q+ if x > 0.

(3)

The conservation law is integrated over a cell to obtain

∂Qi

∂t
= −

1

∆x
(f(q∗

i+ 1

2

) − f(q∗
i− 1

2

)), (4)

where q∗
i− 1

2

is the solution to the Riemann problem along the ray x = xi− 1

2

(or equivalently, f(q∗
i− 1

2

) is the Godunov flux) and Qi is the average of q over

the ith grid cell. High order accuracy can be achieved using equation (4) as
follows. First, reconstruct a piecewise polynomial approximation q̃i to qi in
each cell. In particular, obtain reconstructed values

q+

i− 1

2

= q̃i(xi− 1

2

) = qe(xi− 1

2

) + O(∆xp) (5)

q−
i+ 1

2

= q̃i(xi+ 1

2

) = qe(xi+ 1

2

) + O(∆xp) (6)

which are approximations to q at the neighboring cell interfaces. Here qe

denotes the exact solution.
If the Godunov flux at xi+ 1

2

is then obtained by solving a Riemann problem

with left and right states q−
i− 1

2

and q+

i− 1

2

, respectively, the resulting semi-

discrete approximation (4) is accurate to order p.
Similar to the approach in ([4]), we now proceed to rewrite (4) in terms of

fluctuations. Given a system of the form (2), we assume that the solution to the
Riemann problem is a similarity solution consisting of a set of waves moving
at constant speeds. For nonlinear systems where this may not be the case, we
assume the use of an approximate Riemann solver that yields such a solution.
This class of solvers includes linearized (such as Roe) solvers, as well as the
simpler HLL and LLF solvers. In any case, we then have a decomposition of
the jump in the Riemann problem into waves:

∆q = qr − ql =

Mw
∑

p=1

Wp, (7)

where Wp is the jump across the pth wave, Mw is the number of waves, and
each wave has an associated wave speed sp.

We wish to express the flux difference in (4) in terms of fluctuations,
A±∆q. The fluctuations may be defined in terms of the flux function:
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A−∆q = f(q∗) − f(q−) (8)

A+∆q = f(q+) − f(q∗), (9)

where ∆qi− 1

2

= q+

i− 1

2

−q−
i− 1

2

. Notice that the fluctuations are a splitting of the

flux difference:

f(q+

i− 1

2

) − f(q−
i− 1

2

) = A+∆qi− 1

2

+ A−∆qi− 1

2

. (10)

The sum on the right hand side of (10) is denoted by A∆qi− 1

2

and referred to
as a total fluctuation.

More generally, the fluctuations may be defined in terms of the waves:

A+∆qi− 1

2

=
m

∑

p=1

(sp

i− 1

2

)+Wp

i− 1

2

(11)

A−∆qi+ 1

2

=
m

∑

p=1

(sp

i+ 1

2

)−Wp

i+ 1

2

(12)

The fluctuation A−∆q represents the net effect of all left-going waves on the
solution, while A+∆q represents the net effect of all right-going waves.

Using Eqns. (8-9), the flux difference in Eqn. (4) can be rewritten as

f(q∗
i+ 1

2

) − f(q∗
i− 1

2

) = A−∆qi+ 1

2

+ f(q−
i+ 1

2

) + A+∆qi− 1

2

− f(q+

i− 1

2

) (13)

We now interpret q+

i− 1

2

and q−
i+ 1

2

as the left and right states, respectively, for

a Riemann problem within cell i. Then we have

f(q−
i+ 1

2

) − f(q+

i− 1

2

) = A∆qi (14)

where ∆qi = q−
i+ 1

2

− q+

i− 1

2

. Substitution of (14) into (13) gives

f(q∗
i+ 1

2

) − f(q∗
i− 1

2

) = A−∆qi+ 1

2

+ A+∆qi− 1

2

+ A∆qi. (15)

Substitution into (4) yields the semi-discrete scheme

∂Qi

∂t
= −

1

∆x
(A−∆qi+ 1

2

+ A+∆qi− 1

2

+ A∆qi). (16)

Notice that the final term on the right hand side of (16) does not require
the solution of a Riemann problem. It is clear from the derivation that this
scheme reduces to the corresponding flux-differencing scheme when applied
to (1). The advantage of the scheme over flux-differencing schemes lies in the
ability to solve systems of the form (2). Since systems of this form generally
cannot be rewritten in terms of a flux function, fluctuations are calculated in
terms of the decomposition (11-12). Alternatively, the f-wave decomposition
of [2] may be used to obtain the fluctuations.

Derivation of the scheme directly from (2), without the use of a flux func-
tion, is omitted here for the sake of brevity. The scheme (16) remains valid as
long as the Jacobian A is constant (as a function of x) within each cell.
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2.2 Reconstruction

In the previous section, we assumed that high order accurate point values of
the solution were known. In fact, at the beginning of a time step, only cell-
averaged quantities are known. We now discuss the problem of reconstructing
point values.

Many details are omitted here; the reader is referred to [1] for details on
WENO reconstruction and to [5] for details on TVD reconstruction.

Suppose we have a formula for obtaining the high order accurate approx-
imations (5-6) for a scalar function q(x). We will further assume that the
formula can be written as

q+

i− 1

2

= Qi + φ+(θi+s1−
1

2

, ..., θi+s2−
1

2

)∆qi− 1

2

(17)

q−
i− 1

2

= Qi−1 + φ−(θi+s1−
1

2

, ..., θi+s2−
1

2

)∆qi− 1

2

(18)

where s1, s2 are parameters defining the stencil of the method and

θj− 1

2

=
∆qj− 1

2

∆qi− 1

2

. (19)

For instance, in the case of minmod reconstruction we have

φ± = ∓
1

2

(

1 + sgn(θI− 1

2

)
)

min(1, |θI− 1

2

|) (20)

where I − 1

2
is the next interface upwind of i − 1

2
.

This scalar reconstruction may be applied to systems of equations in var-
ious ways. In the simplest approach, the scalar reconstruction is applied to
each component of q. This approach works well for some problems, but in
other cases it is insufficient. In particular, it appears to become successively
less satisfactory as the order of accuracy of the reconstruction is increased.
See [7] for a detailed discussion with respect to central WENO schemes, for
instance.

Accuracy can be improved by instead applying the reconstruction to the
characteristic fields of q. To do so, we reconstruct as follows. Let Ai− 1

2

=

A(q, xi− 1

2

). Let rp

i− 1

2

, lp
i− 1

2

be the right and left eigenvectors of Ai− 1

2

. First

each jump ∆q is decomposed into characteristic components θp. Then q is
reconstructed via

q+

i− 1

2

= Qi +
∑

p

φ±(θp

i+s1−
1

2

, ..., θp

i+s2−
1

2

)αp

i− 1

2

rp

i− 1

2

(21)

where αp

i− 1

2

= lp
i− 1

2

· ∆qi− 1

2

.

The only difference between the following methods is the manner in which
the θ’s are determined. If the system is nonlinear and/or A has explicit spatial
dependence, the reconstruction must account for the variation in the charac-
teristic structure over the stencil.
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Wave-Slope Reconstruction

In this approach we first determine the waves entering each cell from the
solution of the Riemann problems at each interface using the cell average
states. This yields a set of waves Wp

i− 1

2

associated with each interface. In

order to reconstruct q±
i− 1

2

, we first project the pth wave at each interface in

the stencil onto the pth wave at xi− 1

2

:

θp

j− 1

2

=
Wp

j− 1

2

· Wp

i− 1

2

Wp

i− 1

2

· Wp

i− 1

2

. (22)

We then reinterpret each projected wave as an approximation to the slope of
the corresponding characteristic field at that interface.

Typically the waves result from a linearized Riemann solution, so Wp

i− 1

2

=

(lp
i− 1

2

· ∆qi− 1

2

)rp

i− 1

2

. Then we can express θp

j− 1

2

as

θp

j− 1

2

=
αp

j− 1

2

αp

i− 1

2

rp

j− 1

2

· rp

i− 1

2

rp

i− 1

2

· rp

i− 1

2

(23)

Characteristic-wise Reconstruction

If the Jacobian A has rapidly varying spatial dependence, the previous meth-
ods may yield inaccurate results. In this case, the reconstruction is performed
using

θp

j− 1

2

=
lp
i− 1

2

· ∆qj− 1

2

αp

i− 1

2

(24)

Transmission-based Reconstruction

In the reconstruction method of the previous section, waves from all charac-
teristic fields at each interface in the stencil are decomposed and contribute
to each characteristic field at interface i − 1

2
. For some systems, such as lin-

ear acoustics, it appears more reasonable to decompose only waves from the
corresponding characteristic field. In the case of acoustics, this has the inter-
pretation of taking waves approaching the interface i + 1

2
and comparing the

part of each that would be transmitted through that interface. In this case,
the reconstruction is performed using

θp

j− 1

2

=
αp

j− 1

2

αp

i− 1

2

(lp
i− 1

2

· rp

j− 1

2

). (25)
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2.3 Time Stepping

Equation (16) may be integrated via an ODE solver. One-step methods are
most convenient, and WENOCLAW is implemented using Runge-Kutta meth-
ods. Several strong stability preserving methods [3, 9] have been implemented,
with order of accuracy ranging from two to five.

3 Extension to Two Dimensions

The semi-discrete scheme may be extended to two dimensions in a straight-
forward manner. The two-dimensional analog of (2) is

qt + A(q, x, y)qx + B(q, x, y)qy = 0. (26)

It is possible to extend the semi-discrete wave propagation scheme using
a simple dimension-by-dimension approach, meaning that the reconstruction
at each face only uses data in a slice orthogonal to that face. The scheme is

∂Qi,j

∂t
= −

1

∆x

(

A∆qi,j + A+∆qi− 1

2
,j + A−∆qi+ 1

2
,j

)

(27)

−
1

∆y

(

B∆qi,j + B+∆qi,j− 1

2

+ B−∆qi,j+ 1

2

)

(28)

where the B±∆q represent fluctuations in the y direction. Because it neglects
certain cross-derivative terms, this scheme is formally of second order, regard-
less of the order of accuracy of the reconstruction and time stepping. However,
in practice, the method yields solutions that are much better than traditional
second order methods.

To formally achieve greater than second order accuracy, Gauss quadra-
ture is used to integrate fluctuations over faces. The details of the genuinely
multidimensional implementation are omitted here.

4 Sonic Crystal Bandgap Simulation

The semi-discrete wave propagation schemes we have described are especially
suited for simulation of high-frequency waves in the presence of rapidly varying
material parameters, as is the case for sound waves passing through a sonic
crystal.

Small amplitude acoustic waves are described by the linear hyperbolic
system

pt + K(x)ux = 0 (29)

ut +
1

ρ(x)
px = 0 (30)
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where p, u are pressure and velocity perturbations (respectively) relative to
some ambient state. Note that this system is of the form (2), with

q =

(

p
u

)

, A =

(

0 K
1/ρ 0

)

. (31)

We consider a square array of square rods in air with a plane wave dis-
turbance incident parallel to the x-axis. The array is seven periods deep, and
periodic boundary conditions are applied in the y-direction. The lattice spac-
ing is 10 cm and the rods have a cross-sectional side length of 4 cm, so that
the filling fraction is 0.16. This crystal is similar to one studied in [8], and it is
expected that sound waves in the 1200-1800 Hz range will experience severe
attenuation in passing through it, while longer wavelengths will not.

The results presented here were calculated using fifth order dimension-by-
dimension WENO reconstruction with characteristic-wise limiting and a third
order Runge-Kutta method.

Figure 1(a) shows a low frequency plane wave incident from the left. This
wave has a frequency of about 800 Hz, well below the partial band gap. As
expected, the wave passes through the crystal without significant attenuation.
In Figure 2(a), the pressure is plotted along a line approximately midway
between rows of rods.

(a) 821 Hz

(b) 1600 Hz

Fig. 1. RMS pressure in the sonic crystal.

Figures 1(b) and 2(b) show the same quantities for an incident plane wave
with wavenumber k = 29.22 m−1, c = 344 m/s. Notice that the wave is almost
entirely reflected, resulting in a standing wave in front of the crystal.

The authors thank Chi-Wang Shu and Yulong Xing for providing useful
sample FORTRAN WENO codes. The first author was supported during this
work by a U.S. Department of Homeland Security Fellowship and by a U.S.
Department of Energy Computational Science Graduate Fellowship. This re-
search was also supported in part by NSF grant DMS-0106511.
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Fig. 2. RMS pressure in the sonic crystal along a slice at y=-0.05.
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