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Abstract

Solution of partial differential equations by the method of lines
requires the integration of large numbers of ordinary differential equa-
tions (ODEs). In such computations, storage requirements are typi-
cally one of the main considerations, especially if a high order ODE
solver is required. We investigate Runge-Kutta methods that require
only two storage locations per ODE. Existing methods of this type re-
quire additional memory if an error estimate or the ability to restart
a step is required. We present a new, more general class of methods
that provide error estimates and/or the ability to restart a step while
still employing the minimum possible number of memory registers.
Examples of such methods are shown and tested.

1 Introduction

In this work we are concerned with the numerical solution of the initial value
problem (IVP)

u′ = F (t, u) u(0) = u0, (1)

where u ∈ ℜN and F : ℜ × ℜN → ℜN . For brevity, we will typically omit
the time-dependence and write F (u).
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In particular, we are interested in the approximate solution of (1) via the
Runge-Kutta method [4, 11]

yi =un + ∆t

i−1
∑

j=1

aijF (tn + cj∆t, yj) 1 ≤ i ≤ m (2a)

un+1 =un + ∆t

m
∑

j=1

bjF (tn + cj∆t, yj). (2b)

Here un is an approximation to u(tn) and ∆t = tn+1 − tn. The intermedi-
ate values yi are referred to as stages, and the Butcher coefficients aij , bj, cj

define the method. A straightforward implementation of (2) requires m + 1
memory registers of length N , where m is the number of stages and N is
the number of ordinary differential equations. In early computers, only a
very small amount of memory was available for storing both the program
and intermediate results of the computation, which led Gill to devise a four-
stage fourth-order Runge-Kutta method that could be implemented using
only three memory registers [10]. The method relied on a particular alge-
braic relation between the coefficients, such that only certain combinations of
previous stages (rather than all of the stages themselves) needed to be stored.
This is the basic idea underlying all low-storage methods, including those of
the present work. Blum later provided a three-register implementation of the
classical Runge-Kutta method (with rational coefficients) [2]. Fyfe showed
that all four-stage fourth order methods are capable of three-register imple-
mentation [9]. Shampine devised a variety of techniques for reducing the
storage requirements of methods with many stages [16]. Williamson devised
a two-register algorithm [21]; he showed that ”all second-order, many third-
order, and a few fourth-order” methods can be implemented in this fashion.
One of his third-order methods is among the most popular low-storage meth-
ods; however, his fourth-order methods are not generally useful because they
apply only to the special case in which F (u) is bounded as u → ∞.

On modern computers, storage space for programs is no longer a con-
cern; however, when integrating very large numbers of ODEs, fast memory
for temporary storage during a computation is often the limiting factor. This
is typically the case in method of lines discretizations of PDEs, and mod-
ern efforts have focused on finding low-storage methods that are also opti-
mized for stability and or accuracy relative to particular semi-discretizations
of PDEs. Exploiting Williamson’s technique, Carpenter and Kennedy [8]
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developed four-stage, third-order, two-register methods with embedded sec-
ond order methods for error control. They also derived five-stage fourth
order two-register methods [7]. In perhaps the most thorough work on low-
storage methods, Kennedy et. al. [14] generalized a type of low-storage
implementation originally due to van der Houwen [20]. They provide many
methods of various orders, optimized for a variety of accuracy and stabil-
ity properties. Further development of low-storage Runge-Kutta methods in
the last decade has come from the computational aeroacoustics community
[13, 18, 5, 6, 3, 1, 19].

All of the two-register methods in the literature use one of two algorithms
(referred to below as 2N and 2R). These algorithms rely on particular assump-
tions regarding the evaluation and storage of F . Recently, in [15], a new type
of low-storage algorithm was proposed, based on a different assumption on
F . The aim of the present work is to present a general algorithm based on
this assumption, which includes the 2N and 2R algorithms as special cases,
but allows additional degrees of freedom in designing the methods.

It is often important, when solving an ODE numerically, to have an esti-
mate of the local truncation error. Methods that provide such error estimates
are known as embedded methods. Existing low-storage embedded methods
always require an extra memory register to provide the error estimate. If a
desired error tolerance is exceeded in a given step, it may be necessary to
restart that step. In this case, another additional register is necessary for
storing the previous step solution. In some applications where no error esti-
mate is used, restarting may still be required based on some other condition
(such as a CFL condition) that is checked after each step. In this case, again,
existing low-storage methods require the use of an extra register.

In the present work we present improved low-storage methods that use
the theoretical minimum number of registers in each of these situations, i.e.
two registers if an error estimate or the ability to restart is required, and three
registers if both are needed. In each case these methods use one register fewer
than any known methods.

In Section 2, we review existing low-storage methods and explicitly define
the assumptions required for their implementation. In Section 3, we observe
that these methods have sparse Shu-Osher forms. Based on this observation,
we introduce a new, more general class of low-storage methods. In Section 5,
we explain how the low-storage methods can be implemented for integrating
an important class of PDE semi-discretizations. In Section 6, we present new
low-storage methods.
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2 Two-register Methods

Before proceeding, it is helpful to define precisely what is meant by the
number of registers required by a method. Let N denote the number of
ODEs to be integrated (typically the number of PDEs multiplied by the
number of gridpoints). Then we say a method requires M registers if each
step can be calculated using MN + o(N) memory locations.

Let S1, S2 represent two N -word registers in memory. Then it is always
assumed that we can make the assignments

S1 := F(S2)

and
S1 := c1S1 + c2S2

without using additional memory beyond these two registers. Here a := b

means ’the value of b is stored in a’. Using these only these two types of
assignments, it is straightforward to implement an m-stage method using
m + 1 registers.

Various Runge-Kutta algorithms have been proposed that require only
two registers. Each requires some additional type of assignment, and takes
one of the following two forms.

2.1 Williamson (2N) methods

Williamson methods [21] require 2 registers and take the following form:

Algorithm 1: Williamson (2N)

(y1) S1 := u
n

for i = 2 : m + 1 do

S2 := AiS2 + ∆tF(S1)

(yi) S1 := S1 + BiS2

end

un+1 = S1
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with A2 = 0. The methods proposed in [8, 7, 18, 1, 12] are also of
Williamson type. Observe that an m-stage method has 2m− 1 free parame-
ters. The coefficients above are related to the Butcher coefficients as follows:

Bi = ai+1,i i < m

Bm = bm

Ai =
bi−1 − ai,i−1

bi

bi 6= 0

Ai =
ai+1,i−1 − ci

ai+1,i

bi = 0.

In order to implement these methods with just two registers, the following
assumption is required:

Assumption 1 (Williamson) Assignments of the form

S2 := S2 + F(S1) (4)

can be made with only 2N + o(N) memory.

Williamson notes that (converting some notation to the present)

No advantage can be gained by trying to generalize [Algorithm
1] by including a term [proportional to S1] in the expression for
[S2]...this is because the additional equations determining the new
parameters turn out to be linearly dependent on those for Ai and
Bi.

Indeed, it appears that the algorithm above is the most general possible using
only two registers and Assumption 1.

2.2 van der Houwen (2R) methods

A different low-storage algorithm was developed by van der Houwen [20] and
Wray [14]. It is similar to, but more aggressive than the approach used by
Gill [10]. The implementation is given as Algorithm 2.

The coefficients aij , bj are the Butcher coefficients, and we define a10 =
b0 = 0. Again, an m-stage method has 2m− 1 free parameters. The class of
methods proposed in [5, 6] is equivalent. In [14], an implementation is given
that requires swapping the roles of the two registers at each stage. Here we
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Algorithm 2: van der Houwen (2R)

S2 := u
n

for i = 1 : m do

(yi) S1 := S2 + (ai,i−1 − bi−1)∆tS1

S1 := F(S1)

S2 := S2 + bi∆tS1

end

un+1 = S2.

have followed the implementation of [6] as it is less complicated in that the
roles of the two registers need not be swapped at each stage.

Methods of van der Houwen type have also been proposed in [19]. The
low-storage methods of [13] can be viewed as a subclass of van der Houwen
methods with especially simple structure.

In order to implement these methods with just two registers, the following
assumption is required:

Assumption 2 (van der Houwen) Assignments of the form

S1 := F(S1)

may be made with only N + o(N) memory.

Again, it seems that the above algorithm is the most general possible using
only two registers and Assumption 2.
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3 Low-Storage Methods Have Sparse Shu-Osher

Forms

The low-storage methods above can be better understood by considering the
Shu-Osher form [17] for a Runge-Kutta method:

y1 =un (5a)

yi =

i−1
∑

j=1

(αijyj + βij∆tF (yj)) 2 ≤ i ≤ m + 1 (5b)

un+1 =ym+1. (5c)

This form is prominent in the literature on strong stability preserving Runge-
Kutta methods. For convenience we have shifted the indexing of α, β relative
to the usual Shu-Osher form in order to make the stages yi agree with the
Butcher form. The Shu-Osher form for a given method is not unique. By
writing (5) as a homogeneous linear system, it follows that the method is
invariant under the transformation (for any t and i, j > 1)

αij =⇒ αij − t (6a)

αik =⇒ αik + tαjk k 6= j (6b)

βik =⇒ βik + tβjk. (6c)

It is convenient to define the matrices:

(α)ij =

{

0 i = 1
αij i > 1

(7)

(β)ij =

{

0 i = 1
βij i > 1.

(8)

Defining further α0, β0 to be the upper m × m parts of α, β, and α1, β1 to
be the remaining last rows, the relation between the Butcher array and the
Shu-Osher form is

A =(I − α0)
−1β0 =

(

m−1
∑

i=0

αi
0

)

β0 (9a)

bT =β1 + α1A. (9b)



Low-Storage Runge-Kutta Methods 8

It turns out that Williamson and van der Houwen methods possess a Shu-
Osher form in which the matrices α, β are very sparse. This is not surprising,
since low-storage algorithms rely on partial linear dependencies between the
stages, and such dependencies can be exploited using the transformation (6)
to introduce zeros into these matrices.

3.1 2N Methods

By straightforward algebraic manipulation, Williamson methods can be writ-
ten in Shu-Osher form with

yi =αi,i−2yi−2 + (1 − αi,i−2)yi−1 + βi,i−1∆tF (yi−1) 1 < i ≤ m + 1 (10)

where αi,i−2 = −BiAi

Bi−1

and βi,i−1 = Bi. Here and elsewhere, any coefficients

with nonpositive indices are taken to be zero. Notice that α is bidiagonal
and β is diagonal.

3.2 2R Methods

Similarly, van der Houwen methods can be written in Shu-Osher form with

yi =yi−1 + βi,i−2∆tF (yi−2) + βi,i−1∆tF (yi−1) 1 < i ≤ m + 1 (11)

where βi,i−2 = bi−1 − ai−1,i−2 and βi,i−1 = ai,i−1. Notice that α is diagonal
and β is bidiagonal.

4 2S Methods

Based on the Shu-Osher forms presented above for 2N and 2R methods, it
is natural to ask whether it is possible to implement a method with just two
registers if α and β have other types of sparse structure. Perhaps the most
obvious generalization is to allow both matrices to be bidiagonal, i.e.

yi =αi,i−2yi−2 + (1 − αi,i−2)yi−1 + βi,i−2∆tF (yi−2) + βi,i−1∆tF (yi−1). (12)

It turns out that this is possible, under the following assumption, which was
introduced in [15]:
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Assumption 3 Assignments of the form

S1 := S1 + F(S1)

can be made with only N + o(N) memory.

Examining the Shu-Osher form (12), it is clear that 2S methods may
be implemented (under Assumption 3) using two registers if one is willing
to evaluate F (yi) twice for each stage i. With a little care, however, this
doubling of the number of function evaluations can be avoided. The resulting
algorithm is given as Algorithm 3.

Algorithm 3: 2S

S2 := 0

(y1) S1 := u
n

for i = 2 : m + 1 do

S2 := S2 + δi−1S1

(yi) S1 := γi1S1 + γi2S2 + βi,i−1∆tF(S1)

end

un+1 = S1

The value of δm makes no essential difference (any change can be compen-
sated by changing γm+1,1, γm+1,2), so we set it to zero. Consistency requires
that δ1 = 1, γ22 = 1, and

γi,1 =1 − γi,2

i−1
∑

j=1

δj 2 ≤ i ≤ m + 1,

leaving 3s − 3 free parameters – significantly more than for the 2N or 2R
methods. We refer to these methods as 2S methods. Clearly this class
includes the 2N and 2R methods as well as new methods.

While the Butcher coefficients are not needed for implementation, they
are useful for analyzing the properties of the methods. They can be obtained
from the low-storage coefficients as follows. The coefficients βi,i−1 appear-
ing in Algorithm 3 are Shu-Osher coefficients. In terms of the low-storage
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coefficients, the remaining nonzero Shu-Osher coefficients are

βi+1,i−1 = −
γi+1,2

γi,2
βi,i−1 2 ≤ i ≤ m

αi+1,i−1 = −
γi+1,2

γi,2
γi,1 2 ≤ i ≤ m

αi+1,i =1 − αi+1,i−1 2 ≤ i ≤ m.

The Butcher coefficients are obtained by substituting the above values into
(9).

If γi2 = 0 for some i, the low-storage method cannot be written in the
bidiagonal Shu-Osher form; however, it will still possess a sparse (in fact, even
more sparse) Shu-Osher form, and can be implemented using two registers
in a slightly different way. We do not investigate such methods in detail,
since they have a smaller number of free parameters than the general case.
However, note that some of the methods of [15] are of this type.

4.1 2S* Methods

It is common to check some accuracy or stability condition after each step,
and to reject the step if the condition is violated. In this case, the solution
from the last timestep, un, must be retained during the computation of un+1.
For 2R/2N/2S methods, this will require an additional register. On the other
hand, in [15], methods were proposed that can be implemented using only
two registers, with one register retaining the previous solution. We refer to
these as 2S* methods. These methods have Shu-Osher form

yi =αi,1u
n + αi,i−1yi−1 + βi,i−1∆tF (yi−1) (14)

Here we give a general algorithm for such methods (Algorithm 4), which is
straightforward given the sparse Shu-Osher form. It is equivalent to the usual
2S algorithm with γi2 = αi,1 and δi = 0 except δ1 = 1. Remarkably, these
methods have as many free parameters (2m-1) as 2N/2R methods.

4.2 2S Embedded Pairs

It is often desirable to compute an estimate of the local error at each step.
The most common way of doing this is to use an embedded method, i.e. a
second Runge-Kutta method that shares the same matrix A (hence the same
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Algorithm 4: 2S*

(y1) S1 := u
n

S2 := u
n

for i = 2 : m + 1 do

(yi) S1 := (1− αi,1)S1 + αi,1S2 + βi,i−1∆tF(S1)

end

un+1 = S1

stages) but a different vector of weights b̂ in place of b. The methods are
designed to have different orders, so that their difference gives an estimate
of the error in the lower order result. As it is common to advance the higher
order solution (’local extrapolation’), we refer to the higher order method as
the principal method, and the lower order method as the embedded method.
Typically the embedded method has order one less than the principal method.

In [14], many 2R embedded pairs are given; however, a third storage
register is required for the error estimate. The 2S algorithm can be modified
to include an embedded method while still using only two storage registers.
The implementation is given as Algorithm 5.

Algorithm 5: 2S embedded

S2 := 0

(y1) S1 := u
n

for i = 2 : m + 1 do

S2 := S2 + δi−1S1

(yi) S1 := γi1S1 + γi2S2 + βi,i−1∆tF(S1)

end

un+1 = S1

(ûn+1) S2 :=
1

∑m+1

i=2
δi

(S2 + δm+1S1)

Here ûn+1 is the embedded solution. Note that there are two additional
free parameters, δm, δm+1, effectively determining the weights b̂. Since the
conditions for first and second order are (for fixed abscissas c) a pair of linear
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equations for the weights, it would appear that if the embedded method is at
least second order, then necessarily b̂ = b. However, by including additional
stages, the added degrees of freedom can be used to achieve independence of
b, b̂.

The relation between the coefficients in Algorithm 5 and the Shu-Osher
coefficients for the principal method is again given by (17), and the Butcher
coefficients can then be obtained using (9). The embedded method has the
same Butcher arrays A, c, with the weights b̂ given by

b̂j =
1

∑

k δk

(

δm+1bj +
∑

i

δiaij

)

(15)

where bj , aij are the Butcher coefficients of the principal method.

4.3 3S* Methods

Our experience indicates that the class of 2S* methods above typically have
relatively unfavorable error constants (though they are not so large as to be
unusable for practical applications). Hence we are led to consider methods
with Shu-Osher form

yi =αi,1u
n + αi,i−1yi−1 + αi,i−2yi−2 + βi,i−2∆tF (yi−2) + βi,i−1∆tF (yi−1)

(16)

These methods can be implemented using three registers, while retaining
the previous solution. Hence we refer to them as 3S* methods. Because
they allow more free parameters than 2S* methods, 3S* methods can be
found with much smaller error constants. Furthermore, it is possible to
design embedded pairs within this framework. The corresponding algorithm
is given as Algorithm 6. Note that these are the first methods to provide
both error control and the ability to restart a step with only three memory
registers. No further improvement is possible, since the new solution, the
previous solution, and an error estimate must be available simultaneously.

Note that including terms in S2 proportional to S3 is superfluous. Con-
sistency requires δ1 = 1 and we take γ22 = 1, γ21 = γ23 = γ33 = γ43 = 0 to
eliminate additional spurious degrees of freedom. Thus the primary method
has 4m−6 free parameters, with 3 more available for the embedded method.
Once again, to avoid having b̂ = b, additional stages are necessary.
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Algorithm 6: 3S* embedded

S3 := u
n

(y1) S1 := u
n

for i = 2 : m + 1 do

S2 := S2 + δi−1S1

(yi) S1 := γi1S1 + γi2S2 + γi3S3 + βi,i−1∆tF(S1)

end

(ûn+1) S2 :=
1

∑m+2

j=1
δj

(S2 + δm+1S1 + δm+2S3)

un+1 = S1

Again, the coefficients βi,i−1 in Algorithm 6 are just the corresponding
Shu-Osher coefficients. The remaining Shu-Osher coefficients are

βi+1,i−1 = −
γi+1,2

γi,2

βi,i−1 2 ≤ i ≤ m

αi+1,1 =γi+1,3 −
γi+1,2

γi,2

γi,3 2 ≤ i ≤ m

αi+1,i−1 = −
γi+1,2

γi,2
γi,1 2 ≤ i ≤ m

αi+1,i =1 − αi+1,i−1 − αi+1,1 2 ≤ i ≤ m.

The Butcher array for the principal method can then be obtained using (9).
The embedded method is again identical except for the weights, which are
given by (15).

5 Feasibility of Low-storage Assumptions

In this section we discuss the feasibility of the various low-storage assump-
tions. We will assume the method is applied to integrate a semi-discretization
of a PDE on a structured grid where the stencil is local; in 1D this means
that the Jacobian is sparse with narrow bandwidth; i.e., the formula for up-
dating a given cell depends on a local stencil whose size is independent of
the overall grid size. This is typical of many finite difference, finite volume,
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and discontinuous Galerkin methods. For semi-discretizations with dense ja-
cobian, it appears that an additional ’working space’ memory register will
always be necessary. In one dimension, we write the semi-discretization as:

∂uij

∂t
= F (ui−r, . . . , ui+r) (18)

for some (small) fixed integer r.

5.1 2N Methods

Recall that 2N methods require Assumption 1, which involves assignments
of the form

S1 := S1 + F(S2). (19)

For systems of the form (18), implementation of 2N methods is completely
straightforward, since the register from which F is being calculated is dif-
ferent from the register to which it is being written. The algorithm simply
marches along the grid, calculating F at each point.

5.2 2R Methods

Recall that 2R methods require Assumption 2, which involves assignments
of the form

S1 := F(S1). (20)

A naive implementation like that prescribed for 2N methods above will over-
write solution values that are needed for subsequent computations of F. It is
thus necessary to maintain a small buffer with old solution values that are
still needed. In one dimension, the buffer need only be the size of the com-
putational stencil (i.e., 2r+1). The algorithm looks roughly like this (letting
S denote the memory register and w the buffer)

w[1 : 2r] := w[2 : 2r + 1]

w[2r + 1] := S[i + r]

S[i] := F(w).

In higher dimensions a similar strategy can be used, depending on whether
the stencil is one-dimensional or multi-dimensional. If it is 1D, then one can
simply apply the algorithm above along each slice. If it is d-dimensional then
a buffer containing 2r+1 slices of dimension d−1 is required. In either case,
the buffer size is much smaller than a full register.
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5.3 2S Methods

For the type of spatial discretizations under consideration here, implementa-
tion of 2S methods is no more difficult than implementation of 2R methods.
The algorithm in 1D is identical except that one assigns

s[i] := s[i] + F(w)

at each point. The extension to multiple dimensions follows the same pat-
tern.

6 Improved low-storage methods

In this section we present some new low-storage methods of the types de-
veloped in the previous section. This is only intended to demonstrate what
is possible; a thorough investigation of 2S methods optimized for various
properties, like that done in [14] for 2R methods, is left for future work.

Similarly to [14], we refer to a method as RK-p(p̂)m[X], where m is the
number of stages, p is the order of accuracy, p̂ is the order of accuracy of
the embedded method (if any), and X indicates the type of method (2R, 2S,
2S*, etc.).

By writing a three-stage Runge-Kutta method in Shu-Osher form (5) and
using transformations of the form (6) to write the method in the form (12), it
is seen that any three-stage method may be implemented in 2S form except
in the special case that β31 = α31β21. In this case the method may be im-
plemented with two registers using a slight modification of the 2S algorithm.
Hence all three-stage Runge-Kutta methods can be implemented using two
registers.

Throughout the development of low-storage Runge-Kutta methods, fourth-
order methods have been of particular interest [10, 2, 9, 21]. In this section
we present several examples of minimum storage fourth order methods. We
have also found 2S (and 2S*, embedded, etc.) methods of fifth and sixth
orders. As far as we know, these are the first two-register methods of sixth
order.

It is known that no generally applicable four-stage fourth order two-
register methods of 2N or 2R type exist [21, 14]. This is not surprising, since
four-stage methods in those classes have seven free parameters, whereas there
are 8 conditions for fourth order accuracy. Four-stage 2S methods, on the
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Method A(p+1) SI SR

Classical RK4 1.45e-02 0.71 0.70
RK4(3)5[2R+]C 5.12e-03 0.66 0.96
RK4()4[2S] 2.81e-02 0.71 0.70
RK4()6[2S] 4.17e-03 0.60 1.60
RK4()5[2S*] 1.49e-02 0.62 0.67
RK4(3)5[2S] 1.25e-02 0.57 0.56
RK4(3)5[3S*] 5.52e-03 0.67 0.93

Table 1: Properties of low-storage methods

other hand, have 9 free parameters, and fourth order methods of this kind
exist. An example of such a method is given in Table 2 as RK4()4[2S].

By allowing additional stages, methods with improved accuracy or sta-
bility are possible. These methods can have very good properties compared
to 2R or 2N methods because of the additional degrees of freedom avail-
able. As an example, we include in Table 3 a six-stage, fourth order method
RK4()6[2S] with improved real-axis stability. In table 4 we present a 2S*
method of fourth order, using five stages. In Table 5 we present a 4(3)5 2S
pair, and in Table 6 a 4(3)5 3S* pair.

Table 1 summarizes the accuracy and stability properties of these meth-
ods. The quantities SI , SR are the size of the largest interval included in the
region of absolute stability along the imaginary and real axes, respectively,
scaled (divided) by the number of stages of the method. The quantity A5

is the L2 principal error norm (i.e., the norm of the vector of leading-order
truncation error coefficients). The classical fourth-order RK method and a
recommended 2R method from [14] are included for comparison. The new
methods all have reasonably good properties.

7 Conclusions

We have proposed a new class of low-storage Runge-Kutta methods and given
examples of high order methods in this class requiring fewer stages than
existing low-storage methods. The methods include embedded pairs using
only two memory registers, as well as embedded pairs that retain the previous
solution value and use only three memory registers. Such methods were not
previously available. A thorough investigation of 2S methods optimized for
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various properties, like that done in [14] for 2R methods, would be of great
utility.

A Coefficients of Low-storage methods

i γi1 γi2 βi,i−1 δi

1 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000
2 0.000000000000000 1.000000000000000 1.193743905974738 0.217683334308543
3 0.121098479554482 0.721781678111411 0.099279895495783 1.065841341361089
4 -3.843833699660025 2.121209265338722 1.131678018054042 0.000000000000000
5 0.546370891121863 0.198653035682705 0.310665766509336

Table 2: Coefficients for RK44[2S]

i γi1 γi2 βi,i−1 δi

1 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000
2 0.000000000000000 1.000000000000000 0.238829375897678 0.564427596596565
3 0.344088773828091 0.419265952351424 0.467431873315953 1.906950911013704
4 -0.655389499112535 0.476868049820393 0.215210792473781 0.617263698427868
5 0.698092532461612 0.073840520232494 0.205665392762124 0.534245263673355
6 -0.463842390383811 0.316651097387661 0.803800094404076 0.000000000000000
8 0.730367815757090 0.058325491591457 0.076403799554118

Table 3: Coefficients for RK4()6[2S]

i γi1 γi2 βi,i−1

1 0.000000000000000 0.000000000000000 0.000000000000000
2 0.000000000000000 1.000000000000000 0.357534921136978
3 -3.666545952121251 4.666545952121251 2.364680399061355
4 0.035802535958088 0.964197464041912 0.016239790859612
5 4.398279365655791 -3.398279365655790 0.498173799587251
6 0.770411587328417 0.229588412671583 0.433334235669763

Table 4: Coefficients for RK45[2S*]
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i γi1 γi2 βi,i−1 δi

1 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000
2 0.000000000000000 1.000000000000000 0.653858677151052 -1.662080444041546
3 1.587969352283926 0.888063312510453 0.258675602947738 1.024831293149243
4 1.345849277346560 -0.953407216543495 0.802263873737920 1.000354140638651
5 -0.088819115511932 0.798778614781935 0.104618887237994 0.093878239568257
6 0.206532710491623 0.544596034836750 0.199273700611894 1.695359582053809
7 -3.422331114067989 1.402871254395165 0.318145532666168 0.392860285418747

Table 5: Coefficients for RK4(3)6[2S]

i γi1 γi2 γi3 βi,i−1 δi

1 0.000000000000000 0.000000000000000 0.000000000000000 0.000000000000000 1.000000000000000

2 0.000000000000000 1.000000000000000 0.000000000000000 0.075152045700771 0.081252332929194

3 -0.497531095840104 1.384996869124138 0.000000000000000 0.211361016946069 -1.083849060586449

4 1.010070514199942 3.878155713328178 0.000000000000000 1.100713347634329 -1.096110881845602

5 -3.196559004608766 -2.324512951813145 1.642598936063715 0.728537814675568 2.859440022030827

6 1.717835630267259 -0.514633322274467 0.188295940828347 0.393172889823198 -0.655568367959557

7 -0.194421504490852

Table 6: Coefficients for RK4(3)5[3S*]
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