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Abstract. We present a finite volume method that is applicable to hyperbolic PDEs including
spatially varying and semilinear nonconservative systems. The spatial discretization, like that of the
well-known Clawpack software, is based on solving Riemann problems and calculating fluctuations
(not fluxes). The implementation employs weighted essentially nonoscillatory reconstruction in space
and strong stability preserving Runge–Kutta integration in time. The method can be extended to
arbitrarily high order of accuracy and allows a well-balanced implementation for capturing solutions
of balance laws near steady state. This well-balancing is achieved through the f -wave Riemann solver
and a novel wave-slope WENO reconstruction procedure. The wide applicability and advantageous
properties of the method are demonstrated through numerical examples, including problems in non-
conservative form, problems with spatially varying fluxes, and problems involving near-equilibrium
solutions of balance laws.
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1. Introduction. Many important physical phenomena are governed by hyper-
bolic systems of conservation laws. In one space dimension the standard conservation
law has the form

(1.1) qt + f(q)x = 0,

where the components of q ∈ R
m are conserved quantities and the components of

f : Rm×R
m → R

m are the corresponding fluxes. Very many numerical methods have
been developed for the solution of (1.1); some of the most successful are the high
resolution Godunov-type methods based on the use of Riemann solvers and nonlinear
limiters. These and other methods are generally based on flux-differencing and make
explicit use of the flux function f .

Herein we also consider systems with spatially varying flux,

(1.2) κ(x)qt + f(q, x)x = ψ(q, x),

and spatially varying linear systems not in conservation form,

(1.3) κ(x)qt +A(x)qx = ψ(q, x),

as well as their two-dimensional (2D) extensions. Wave propagation methods of up to
second-order accuracy have been developed for such systems in, e.g., [21, 20]. These

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section April 11,
2011; accepted for publication (in revised form) August 28, 2012; published electronically January 22,
2013. This work was supported in part by NSF grants DMS-0609661 and DMS-0914942.

http://www.siam.org/journals/sisc/35-1/83032.html
†King Abdullah University of Science and Technology, Thuwal, Saudi Arabia, 23955-6900 (david.

ketcheson@kaust.edu.sa, matteo.parsani@kaust.edu.sa).
‡Department of Applied Mathematics, University of Washington, Seattle, WA 98195-2420 (rjl@

uw.edu).

A351

D
ow

nl
oa

de
d 

09
/1

7/
14

 to
 1

09
.1

71
.1

37
.2

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A352 D. I. KETCHESON, M. PARSANI, AND R. J. LEVEQUE

methods are based on wave-propagationRiemann solvers, which compute fluctuations,
(i.e., traveling discontinuities) rather than fluxes and thus can be applied to (1.2) or
(1.3) just as easily as to the conservation law (1.1).

Second-order methods may often be the best choice in terms of a balance be-
tween computational cost and desired resolution, especially for problems with solu-
tions dominated by shocks or other discontinuities with relatively simple structures
between these discontinuities. For problems containing complicated smooth solution
structures, where the accurate resolution of small scales is required (e.g., simulation
of compressible turbulence, computational aeroacoustics, computational electromag-
netism, turbulent combustion, etc.), schemes with higher order accuracy are desirable.

The purpose of this work is to present a numerical method that combines the
advantages of wave propagation solvers with high order of accuracy. The basic dis-
cretization approach was presented already in [15]; here, we give a more detailed
presentation and demonstrate the wide applicability of the method. The new method
combines the notions of wave propagation [21, 23] and the method of lines and can in
principle be extended to arbitrarily high order accuracy by the use of high-order ac-
curate spatial reconstructions and high-order accurate ordinary differential equation
(ODE) solvers. The implementation presented here is based on the fifth-order accu-
rate weighted essentially nonoscillatory (WENO) reconstruction and a fourth-order
accurate strong-stability-preserving Runge–Kutta scheme. We restrict our attention
to problems in one or two dimensions, although the method may be extended in a
straightforward manner to higher dimensions.

Although the method described here can be applied to classical hyperbolic systems
(1.1), in that case it is equivalent to a standard finite volume WENO flux-differencing
scheme, as long as componentwise reconstruction and a conservative wave propagation
Riemann solver (such as a Roe or HLL solver) are used. For this reason, we focus on
problems in nonconservative form or with explicit spatial dependence in the flux or
source terms, which can be challenging for traditional discretizations.

Another approach to high-order discretization of hyperbolic partial differential
equations (PDEs), referred to as the ADER method, was developed by Titarev and
Toro [33] and subsequent authors. That approach uses the Cauchy–Kovalewski pro-
cedure and has the advantage of leading to one-step time discretization. The method-
of-lines approach used in the present work seems more straightforward and allows
manipulation of the method’s properties by the use of different time integrators, but
requires the evaluation of multiple stages per time step.

A similar class of conservative, well-balanced, and high-order accurate methods
was developed by Castro, Gallardo, Parés, and their coauthors; see, e.g., [4]. Those
methods also use WENO reconstruction and Runge–Kutta time stepping in conjunc-
tion with Riemann solvers and lead to a discretization with a form similar to that
presented here and in [15]. Those methods have recently been combined with the
ADER approach; see [9]. The present method differs in the approach to reconstruc-
tion and the kind of Riemann solvers used. These differences result in some useful
features: our method also handles systems (1.2)–(1.3) with capacity function κ, and it
can make use of f -wave Riemann solvers [3] as well as wave-slope reconstruction and
achieve high-order convergence even for some problems with discontinuous coefficients.
Finally, the method can immediately be applied to very many interesting problems
because the implementation is based on Clawpack Riemann solvers, which are avail-
able for a great variety of hyperbolic systems. A potential drawback of the current
implementation of our method is that, for well-balancing, it relies on discretizing the
source term such that its effect is collocated at cell interfaces only.
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The methods described in this paper are implemented in the software package
SharpClaw, which is freely available online from http://www.clawpack.org. Sharp-
Claw employs the same interface that is used in Clawpack [23] for problem specifica-
tion and setup, as well as for the necessary Riemann solvers. This makes it simple
to apply SharpClaw to a problem that has been set up in Clawpack. These methods
have also been incorporated into PyClaw [17], which allows them to be run in parallel
on large supercomputers.

The paper is organized as follows. In section 2.2, we present Godunov’s method
for linear hyperbolic PDEs in wave propagation form [23]. This method is extended
to high order in section 2.3 by introducing a high-order reconstruction based on cell
averages. Generalization to spatially varying nonconservative linear systems is pre-
sented in section 2.4. Further extensions and details of the method are presented in
the remainder of section 2. Numerical examples, including application to acoustics,
elasticity, and shallow water waves, are presented in section 3.

2. Semidiscrete wave propagation. The wave propagation algorithm was
first introduced by LeVeque [21] in 1997 in the framework of high resolution finite
volume methods for solving hyperbolic systems of equations. The scheme is conserva-
tive, second-order accurate in smooth regions and captures shocks without introducing
spurious oscillations. In this section, we extend the wave propagation algorithm to
high-order accuracy through use of high-order reconstruction and time marching. For
simplicity, we focus on the one-dimensional (1D) scheme and then briefly describe the
extension to two dimensions.

2.1. Riemann problems and notation. The notation for Riemann solutions
used in this paper comes primarily from [23] and is motivated by consideration of the
linear hyperbolic system

(2.1) qt +Aqx = 0.

Here q ∈ R
m and A ∈ R

m×m. System (2.1) is said to be hyperbolic if A is diagonaliz-
able with real eigenvalues; we will henceforth assume this to be the case. Let sp and
rp for 1 ≤ p ≤ m denote the eigenvalues and the corresponding right eigenvectors of
A with the eigenvalues ordered so that s1 ≤ s2 ≤ · · · ≤ sm.

Consider the Riemann problem consisting of (2.1) together with initial data

q(x, 0) =

{
ql, x < 0,
qr, x > 0.

(2.2)

The solution for t > 0 is piecewise constant with m discontinuities, the pth one
proportional to rp and moving at speed sp. They can be obtained by decomposing
the difference qr − ql in terms of the eigenvectors rp:

qr − ql =
∑
p

αprp =
∑
p

Wp.(2.3)

We refer to the vectors Wp as waves. Each wave is a jump discontinuity along the
ray x = spt. An example solution is pictured in Figure 1 for m = 3. For brevity, we
will sometimes refer to the Riemann problem with initial left state ql and initial right
state qr as the Riemann problem with initial states (ql, qr).
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Fig. 1. The wave propagation solution of the Riemann problem. The horizontal axis corresponds
to space and the vertical axis to time.

In a finite volume method, it is useful to define notation for the net effect of all
left- or right-going waves:

A−Δq ≡
m∑
p=1

(sp)− Wp,(2.4a)

A+Δq ≡
m∑
p=1

(sp)
+ Wp.(2.4b)

Here and throughout, (x)± denotes the positive or negative part of x:

(x)− = min(x, 0), (x)+ = max(x, 0).

The symbols A±Δq, referred to as fluctuations, should be interpreted as single entities
that represent the net effect of all waves traveling to the right or left. The notation
is motivated by the constant coefficient linear system (2.1), in which case A±Δq =
A±(qr−ql), where A− (respectively, A+) is the matrix obtained by setting all positive
(respectively, negative) eigenvalues of A to zero. See [21] or [23] for more details.

The notation for waves and fluctuations defined in (2.3) and (2.4) can also be
used to describe numerical solutions of Riemann problems for nonlinear systems if
the numerical solver approximates the solution by a series of propagating jump dis-
continuities, which is very often the case. Because the approximate Riemann solution
for a nonlinear system depends not only on the difference qr−ql but also on the values
of the states, we will sometimes employ for clarity the notation Wp(ql, qr) to denote
the pth wave in the solution of the Riemann problem with initial states (ql, qr). In
this case the vectors rp used for the decomposition (2.3) are typically eigenvectors of
an averaged Jacobian matrix Ā, and the sp are the corresponding wave speeds. Then
A±Δq = Ā±(qr − ql). But there are other possible ways to define the rp and sp,
and hence the fluctuations. For example, using the HLL approximate Riemann solver
[12] would always use only two waves regardless of the size of the system. Or, for
the case of spatially varying flux functions, the left-going waves may be defined by
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HIGH-ORDER WAVE PROPAGATION A355

eigenvectors of the Jacobian f ′(ql) while the right-going waves are defined by eigen-
vectors of the Jacobian f ′(qr). One could combine these to create a matrix Ā having
this set of eigenvectors and the corresponding eigenvalues, but this is not required for
implementation of the method. For these reasons we use the more general notation
A±Δq for the fluctuations defined by (2.4).

2.2. First-order Godunov’s method. Consider the constant-coefficient linear
system in one dimension (2.1). Taking a finite volume approach, we define the cell
averages (i.e., the solution variables)

Qi(t) =
1

Δx

∫ x
i+1

2

x
i− 1

2

q(x, t)dx,

where the index i and the quantity Δx denote the cell index and the cell size, respec-
tively. To solve the linear system (2.1), we initially approximate the solution q(x, t)
by these cell averages; that is, at t = t0 we define the piecewise-constant function

(2.5) q̃(x, t0) = Qi for x ∈ (xi− 1
2
, xi+ 1

2
).

The linear system (2.1) with initial data q̃ consists locally of a series of Riemann
problems, one at each interface xi− 1

2
. The Riemann problem at xi− 1

2
consists of (2.1)

with the piecewise-constant initial data

q(x, 0) =

{
Qi−1, x < xi− 1

2
,

Qi, x > xi− 1
2
.

As discussed above, the solution of the Riemann problem is expressed as a set of waves
obtained by decomposing the jump in Q in terms of the eigenvectors of A:

(2.6) Qi −Qi−1 =
∑
p

αp

i− 1
2

rp
i− 1

2

=
∑
p

Wp(Qi−1, Qi).

Let q̃(x, t0 + Δt) denote the exact evolution of q̃ after a time increment Δt. If
we take Δt small enough that the waves from adjacent interfaces do not pass through
more than one cell, then we can integrate (2.1) over [xi− 1

2
, xi+ 1

2
]× [0,Δt] and divide

by Δx to obtain

Qi(t0 +Δt)−Qi(t0) = − 1

Δx

∫ x
i+1

2

x
i− 1

2

A q̃x(x, t0 +Δt)dx.(2.7)

Here q̃x should be understood in the sense of distributions.
We can split the integral above into three parts, representing the Riemann fans

from the two interfaces, and the remaining piece:

(2.8)∫ x
i+1

2

x
i− 1

2

Aq̃xdx =

∫ x
i− 1

2
+sRΔt

x
i− 1

2

Aq̃xdx +

∫ x
i+1

2

x
i+1

2
+sLΔt

Aq̃xdx +

∫ x
i+1

2
+sLΔt

x
i− 1

2
+sRΔt

Aq̃xdx.

The relevant regions are depicted in Figure 2. Here we have defined sL = min(s1
i+ 1

2

, 0)

and sR = max(sm
i− 1

2

, 0). The third integral in (2.8) vanishes because q̃(x,Δt) is
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Fig. 2. Time evolution of the reconstructed solution q̃ in cell i.

constant outside the Riemann fans, by the definition (2.5). Hence (2.8) reduces to∫ x
i+1

2

x
i− 1

2

Aq̃xdx = Δt

m∑
p=1

(
sp
i− 1

2

)+

Wp

i− 1
2

+Δt

m∑
p=1

(
sp
i+ 1

2

)−
Wp

i+ 1
2

(2.9a)

= Δt
(
A+ΔQi− 1

2
+A−ΔQi+ 1

2

)
,(2.9b)

where the fluctuations A−ΔQi+ 1
2
and A+ΔQi− 1

2
are defined by

A−ΔQi+ 1
2
≡

m∑
p=1

(
sp
i+ 1

2

)−
Wp

i+ 1
2

, Wp

i+ 1
2

≡ Wp(Qi, Qi+1),(2.10a)

A+ΔQi− 1
2
≡

m∑
p=1

(
sp
i− 1

2

)+

Wp

i− 1
2

, Wp

i− 1
2

≡ Wp(Qi−1, Qi).(2.10b)

Note again that the fluctuations A+ΔQi− 1
2
and A−ΔQi+ 1

2
are motivated by the idea

of a matrix-vector product but should be interpreted as single entities that represent
the net effect of all waves traveling to the right or left. The uppercase Q in the
fluctuations is meant to emphasize that they are based on differences of cell averages.
For instance, the fluctuation A+ΔQi− 1

2
corresponds to the effect of right-going waves

from the Riemann problem with initial states (Qi−1, Qi).
Substituting (2.9b) into (2.7), we obtain the scheme

Qn+1
i −Qn

i = −Δt

Δx

(
A+ΔQi− 1

2
+A−ΔQi+ 1

2

)
.

Dividing by Δt and taking the limit as Δt approaches zero, we obtain the semidiscrete
wave propagation form of the (first-order) Godunov’s scheme

(2.11)
∂Qi

∂t
= − 1

Δx

(
A+ΔQi− 1

2
+A−ΔQi+ 1

2

)
.
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Equation (2.11) constitutes a linear system of ODEs that may be integrated, for
instance, with a Runge–Kutta method. It is clear from the derivation that this scheme
reduces to the corresponding flux-differencing scheme when applied to systems written
in conservation form, e.g., system (1.2).

2.3. Extension to higher order. The method of the previous section is only
first-order accurate in space. In order to improve the spatial accuracy, we replace
the piecewise-constant approximation (2.5) by a piecewise-polynomial approximation
that is accurate to order p in regions where the solution is smooth:

q̃(x, t0) = q̃i(x) for x ∈ (xi− 1
2
, xi+ 1

2
),(2.12)

where

q̃i(x) = q(x, t0) +O(Δxp+1).

Integration of Aq̃x over [xi− 1
2
, xi+ 1

2
] again yields (2.8), but now the third integral

is nonzero in general, since q̃ is not constant outside the Riemann fans. Define

qRi− 1
2
≡ lim

x→x+

i− 1
2

q̃i(x), qLi+ 1
2
≡ lim

x→x−
i+1

2

q̃i(x),(2.13)

where superscripts L and R refer, respectively, to the left and the right state of the
interface considered. Then in place of (2.9), we now obtain (neglecting terms of order
O(Δt2))

(2.14a)∫ x
i+1

2

x
i− 1

2

Aq̃xdx ≈ Δt
m∑

p=1

(
sp
i− 1

2

)+

Wp

i− 1
2

+Δt
m∑
p=1

(
sp
i+ 1

2

)−
Wp

i+ 1
2

+

∫ x
i+1

2
+sLΔt

x
i− 1

2
+sRΔt

Aq̃xdx

= Δt
(
A+Δqi− 1

2
+A−Δqi+ 1

2

)
+A(qLi+ 1

2
− qRi− 1

2
).(2.14b)

The resulting fully discrete scheme is thus

Qn+1
i −Qn

i = −Δt

Δx

(
A+Δqi− 1

2
+A−Δqi+ 1

2
+A(qLi+ 1

2
− qRi− 1

2
)
)
.

We use the notation A±Δq instead of A±ΔQ because the states in the Riemann
problems are not the cell averages, but rather the reconstructed interface values. In
other words, the fluctuations at xi− 1

2
are defined by

A±Δqi− 1
2
=

m∑
p=1

(
sp(qLi− 1

2
, qRi− 1

2
)
)±

Wp(qLi− 1
2
, qRi− 1

2
).

For instance, the fluctuation A+Δqi− 1
2
corresponds to the effect of right-going waves

from the Riemann problem with initial states (qL
i− 1

2

, qR
i− 1

2

). Moreover, we can view

the term A(qL
i+ 1

2

− qR
i− 1

2

) as the sum of both the left- and right-going fluctuations

resulting from a Riemann problem with initial states (qR
i− 1

2

, qL
i+ 1

2

). It is natural to

denote this term, which we refer to as a total fluctuation, by AΔqi:

AΔqi =
m∑

p=1

(
sp(qRi− 1

2
, qLi+ 1

2
)
)±

Wp(qRi− 1
2
, qLi+ 1

2
).D
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Dividing by Δt and taking the limit as Δt approaches zero, we obtain the semidiscrete
scheme

(2.15)
∂Qi

∂t
= − 1

Δx

(
A+Δqi− 1

2
+A−Δqi+ 1

2
+AΔqi

)
.

2.4. Spatially varying linear systems. Next we generalize the method to
solve 1D spatially varying nonconservative linear systems:

(2.16) qt +A(x)qx = 0.

We again assume that A is a constant function of x within each cell, so we can write
A(x) = Ai(q). In the special case that A is the Jacobian matrix of some function f ,
(2.16) corresponds to the conservation law (1.1). Our method can be applied to the
general system (2.16) as long as the physically meaningful solution to the Riemann
problem can be approximated. This may be nontrivial for a nonconservative nonlinear
problem, as discussed in many papers such as [5, 6, 7, 8, 19]. We do not go into this
here, but assume that our numerical approach is to be applied to a problem for which
the user has a means of solving the Riemann problem in terms of discontinuities
(waves) Wp

i− 1
2

propagating at speeds sp
i− 1

2

, and hence can define fluctuations. This is

the case for any linearized Riemann solver, and often for other approximate solvers.
Then the scheme is given by

(2.17)
∂Qi

∂t
= − 1

Δx

⎛
⎝A+Δqi− 1

2
+A−Δqi+ 1

2
+

∫ x
i+1

2

x
i− 1

2

Ai q̃xdx

⎞
⎠ .

In general, the integral in (2.17) must be evaluated by quadrature; however, for the
conservative system (1.1), the integral can be evaluated exactly and is given by

(2.18)

∫ x
i+1

2

x
i− 1

2

Ai q̃xdx = f(qLi+ 1
2
)− f(qRi− 1

2
).

If the fluctuations are computed using a Roe solver or some other conservative wave-
propagation Riemann solver, then the flux difference appearing in (2.18) is equal to
the sum of fluctuations from a fictitious “internal” Riemann problem for the current
cell i, just as in the linear case above:

(2.19) f(qLi+ 1
2
)− f(qRi− 1

2
) = A+Δqi +A−Δqi = AΔqi.

Specifically, the fluctuations A±Δqi are those resulting from the Riemann problem
with initial states (qR

i− 1
2

, qL
i+ 1

2

). Then we can write (2.17) also as

(2.20)
∂Qi

∂t
= − 1

Δx

(
A−Δqi+ 1

2
+A+Δqi− 1

2
+AΔqi

)
.

Note that, for the conservative system (1.1), if a Roe solver or an f -wave solver
(see section 2.6) is used, then the fluctuations are equal to the flux differences

A−Δqi− 1
2
= f̂i− 1

2
− f(qLi− 1

2
),(2.21)

A+Δqi− 1
2
= f(qRi− 1

2
)− f̂i− 1

2
,(2.22)
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HIGH-ORDER WAVE PROPAGATION A359

where f̂i− 1
2
is the numerical flux at xi− 1

2
. Thus (2.20) is in that case equivalent to

the traditional flux-differencing method

(2.23)
∂Qi

∂t
= − 1

Δx

(
f̂i+ 1

2
− f̂i− 1

2

)
.

In particular, the scheme is conservative in this case.

2.5. Capacity-form differencing. In many applications the system of conser-
vation laws takes the form

(2.24) κ(x)qt + f(q)x = 0,

in one space dimension, or

(2.25) κ(x, y)qt + f(q)x + g(q)y = 0,

in two dimensions, where κ is a given function of space and is usually indicated as
capacity function (see [21]). Systems like (2.24) and (2.25) arise naturally in the
derivation of a conservation law, where the flux of a quantity is naturally defined
in terms of one variable q, whereas it is a different quantity κq that is conserved.
For instance, for the flow in a porous media, κ would be the porosity. Note that a
capacity function can also appear in systems that are not in conservation form, e.g.,
the quasi-linear system (1.3).

Several approaches can be used to reduce such a system to a more familiar con-
servation law. One natural approach is the capacity-form differencing [21],

(2.26)
∂Qi

∂t
= − 1

κiΔx

(
A+Δqi− 1

2
+A−Δqi+ 1

2
+AΔqi

)
,

where κi is the capacity of the ith cell. This is a simple extension of (2.15) or (2.20)
which ensures that

∑
κiQi is conserved (except possibly at the boundaries) and yet

allows the Riemann solution to be computed based on q as in the case κ = 1.

2.6. f-wave Riemann solvers and well-balancing. For application to con-
servation laws, it is desirable to ensure that the wave propagation discretization is
conservative. This can easily be accomplished by using an f -wave Riemann solver [3].
Use of f -wave solvers is also useful for problems with spatially varying flux function,
as well as problems involving balance laws near steady state. Further uses of the
f -wave approach can be found in [1, 2, 18, 28, 32].

The idea of the f -wave splitting for (1.1) is to decompose the flux difference f(qr)−
f(ql) into waves rather than the q-difference used in (2.6); i.e., we decompose the flux
difference as a linear combination of the right eigenvectors rp of some Jacobian:

(2.27) f(qr)− f(ql) =
∑
p

βprp =
∑
p

Zp(ql, qr).

The fluctuations are then defined as

A−Δq ≡
∑

p:sp<0

Zp(ql, qr), A+Δq ≡
∑

p:sp>0

Zp(ql, qr).

Note that the total fluctuation in cell i is given simply by

AΔqi = f
(
qLi+ 1

2

)
− f

(
qRi− 1

2

)
.
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An advantage of particular interest is the possibility of including source terms
directly into the f -wave decomposition. In fact, for balance laws that include nonhy-
perbolic terms,

qt + f(q)x = ψ(q, x),

one can easily extend this algorithm by first discretizing the source term to obtain
values Ψi− 1

2
at the cell interfaces and then compute the waves Zp

i− 1
2

by splitting

(2.28) f(qr)− f(ql)−ΔxΨ(ql, qr, x) =
∑
p

βprp =
∑
p

Zp(ql, qr).

Here Ψ(ql, qr, x) is some suitable average of ψ(q, x) between the neighboring states.
In Bale et al. [3], it has been shown that for the second-order finite volume wave
propagation scheme implemented in Clawpack, the f -wave approach is very useful
for handling source terms, especially in cases where the solution is close to a steady
state because it leads to a well-balanced scheme. However, for our high-order wave
propagation scheme, application of the f -wave algorithm with componentwise or char-
acteristicwise reconstruction [29] (which take no account of the source term) does not
lead to a method that is well balanced, even though the source term is accounted for
in the Riemann solves which compute A±Δqi− 1

2
. This is because with the aforemen-

tioned WENO approaches the reconstructed solution within each cell is not constant
(i.e., qL

i+ 1
2

�= qR
i− 1

2

) and AΔqi �= 0.

In this work, we consider an extension of the f -wave well-balancing technique
that is compatible with our higher order scheme. The extension is useful for problems
in which the source term vanishes over the interior of each cell (i.e., its effect is
concentrated at cell interfaces). This is the case, for instance, when considering the
shallow water equations with piecewise-constant bathymetry (see section 3.3.2). This
well-balancing technique uses the f -wave Riemann solver in combination with an
f -wave-slope reconstruction (see section 2.7.3). With this approach, the contribution
of the source term is directly included in the Riemann solve at the cell’s interface,
i.e., (2.28). The reconstruction methods considered in this work are presented in the
next section.

2.7. Reconstruction. The reconstruction (2.12) should be performed in a man-
ner that yields high-order accuracy but avoids spurious oscillations near discontinu-
ities. For this purpose, we use WENO reconstruction [31]. The spatial accuracy of
the method will in general be equal to that of the reconstruction. In the present work
we employ fifth-order WENO reconstruction.

2.7.1. Scalar WENO reconstruction. WENO reconstruction formulas are
typically written in terms of the divided differences ΔQi± 1

2
/Δx. It is possible to

rewrite them in terms of the difference ratios

(2.29) θi− 1
2 ,j

=
ΔQi− 1

2+j

ΔQi− 1
2

as long as ΔQi− 1
2
�= 0. Then the reconstructed interface values in cell i are given by

qRi− 1
2
= Qi − φ(θi− 1

2 ,2−k, . . . , θi− 1
2 ,k−1)ΔQi− 1

2
,(2.30a)

qLi+ 1
2
= Qi + φ(θi+ 1

2 ,1−k, . . . , θi+ 1
2 ,k−2)ΔQi− 1

2
,(2.30b)
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where φ is a particular nonlinear function that we will not write out here. The
usefulness of (2.30) is that it allows WENO reconstruction to be applied to waves
directly by redefining θ, as we do below. In the case that ΔQi− 1

2
≈ 0 (to near

machine precision), the value of φ is set to zero.
For systems of equations, the simplest approach to reconstruction is component-

wise reconstruction, which consists of applying the scalar reconstruction approach
(2.29)–(2.30) to each element of q. A more sophisticated approach is characteris-
ticwise reconstruction, in which an eigendecomposition of q is performed, followed
by reconstruction of each eigencomponent. For problems with spatially varying co-
efficients, even the characteristicwise reconstruction may not be satisfying, since it
involves comparing coefficients of eigenvectors whose direction in state space varies
from one cell to the next. In Clawpack, an alternative kind of TVD limiting known
as wave limiting has been implemented and shown to be effective for such problems.

2.7.2. Wave-slope reconstruction. In order to implement a wave-typeWENO
limiter, we first solve a Riemann problem at each interface xi− 1

2
, using the adjacent

cell average values Qi−1, Qi as left and right states. This results in a set of waves
Wp

i− 1
2

, which are used solely for the purpose of reconstruction. This reconstruction is

performed by replacing (2.29) by

θp
i− 1

2 ,j
=

Wp

i− 1
2+j

· Wp

i− 1
2

Wp

i− 1
2

· Wp

i− 1
2

(2.31)

and replacing (2.30) by

qLi− 1
2
= Qi−1 +

∑
p

φ(θp
i+ 1

2 ,1−k
, . . . , θp

i+ 1
2 ,k−2

)Wp

i− 1
2

,(2.32a)

qRi− 1
2
= Qi −

∑
p

φ(θp
i− 1

2 ,2−k
, . . . , θp

i− 1
2 ,k−1

)Wp

i− 1
2

.(2.32b)

This approach takes into account the smoothness of the pth characteristic component
of the solution by using the information arising from the k-cell stencils. It is intended
to be similar to that used in Clawpack [23] and can be conveniently implemented
using the same Riemann solvers supplied with Clawpack.

2.7.3. f-wave-slope reconstruction. Wave-slope reconstruction can also be
performed using an f -wave Riemann solver. This is useful for computing near-
equilibrium solutions of balance laws. The procedure is identical to that above, except
that the Riemann problem is solved with the f -wave Riemann solver at each interface
xi− 1

2
, using the adjacent cell average values Qi−1, Qi as left and right states. Since

the resulting f -waves have the form of a q increment multiplied by the wave speed [3],
the waves Z are normalized by the corresponding wave speed before being used for
reconstruction:

Wp

i− 1
2

= Zp

i− 1
2

/sp
i− 1

2

.(2.33)

In this paper we assumed that the original hyperbolic system has no zero eigenvalues
(sp �= 0) or eigenvalues that change sign between grid cells (i.e., the resonant case).
The reconstruction procedure (2.31)–(2.32) is then applied to the waves computed
by (2.33).
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For systems with source terms that are at a steady state, assuming that (2.28)
holds will give a decomposition in which Zp = 0 for all p. Therefore, the f -wave-
slope reconstruction will yield to a constant reconstructed function in regions where
source terms and hyperbolic terms are balanced. Then all fluctuations computed in
the update step will vanish, so the steady state will be preserved exactly.

2.8. Time integration. The semidiscrete scheme can be integrated in time
using any initial-value ODE solver. Herein we use the ten-stage fourth-order strong-
stability-preserving Runge–Kutta scheme of [13]. This method has a large stability
region and a large strong-stability-preserving coefficient, allowing use of a relatively
large CFL number in practical computations. In all numerical examples of the next
section, a CFL number of 2.45 is used.

To summarize, the full semidiscrete algorithm used in each Runge–Kutta stage is
as follows:

0. (only if using wave-slope reconstruction) Solve the Riemann problem at each
interface xi− 1

2
using the adjacent cell average values Qi−1, Qi as left and right

states.
1. Compute the reconstructed piecewise function q̃, and in particular the states
qR
i− 1

2

, qL
i+ 1

2

in each cell, using componentwise, characteristicwise, or wave-slope

reconstruction.
2. At each interface xi− 1

2
, compute the fluctuations A+Δqi− 1

2
and A−Δqi− 1

2
by

solving the Riemann problem with initial states (qL
i− 1

2

, qR
i− 1

2

).

3. Over each cell, compute the integral
∫
A q̃xdx. For conservative systems this

is just the total fluctuation AΔqi.
4. Compute ∂Q/∂t using the semidiscrete scheme (2.17).

Note again that, for conservative systems, the quadrature in step 3 requires nothing
more than evaluating and differencing the fluxes.

2.9. Extension to two dimensions. In this section, we extend the numerical
wave propagation method to two dimensions using a simple dimension-by-dimension
approach. The method is applicable to systems of the form

(2.34) qt +A(x, y)qx +B(x, y)qy = 0

on uniform Cartesian grids.
The 2D analogue of the semidiscrete scheme (2.20) is

∂Qij

∂t
= − 1

ΔxΔy

(
A−Δqi+ 1

2 ,j
+A+Δqi− 1

2 ,j
+AΔqi,j

+B−Δqi,j+ 1
2
+ B+Δqi,j− 1

2
+ BΔqi,j

)
.

(2.35)

For the method to be high-order accurate, the fluctuation terms likeA−Δqi+ 1
2 ,j

should
involve integrals over cell edges, while the total fluctuation terms like AΔqi,j should
involve integrals over cell areas. This can be achieved by forming a genuinely multidi-
mensional reconstruction of q and using, e.g., Gauss quadrature. An implementation
following this approach exists in the SharpClaw software. For nonlinear problems con-
taining shocks, the genuinely multidimensional reconstruction has been found to be
inefficient (at least for some simple test problems), as it typically yields only a small
improvement in accuracy over the dimension-by-dimension scheme given below (which
formally was only second-order accurate), but has a much greater computational cost
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on the same mesh. Similar observations have been reported by Zhang, Zhang, and
Shu in [34], where both approaches have been thoroughly tested and compared for
linear and nonlinear systems. For problems with shocks, at least for the simple test
problems presented, the two schemes give comparable resolution on the same meshes,
despite their difference in formal order of accuracy.

We now describe the dimension-by-dimension scheme for a single Runge–Kutta
stage. We first reconstruct piecewise-polynomial functions q̃j(x) along each row of
the grid and q̃i(y) along each column, by applying a 1D reconstruction procedure to
each slice. We thus obtain reconstructed values

q̃Rj (xi− 1
2
) ≈ q(xi− 1

2
, yj),(2.36a)

q̃Lj (xi+ 1
2
) ≈ q(xi+ 1

2
, yj),(2.36b)

q̃Ri (yi− 1
2
) ≈ q(xi, yi− 1

2
),(2.36c)

q̃Li (yi+ 1
2
) ≈ q(xi, yi+ 1

2
)(2.36d)

for each cell i, j. The fluctuation terms in (2.35) are determined by solving Riemann
problems between the appropriate reconstructed values; for instance, B−Δqi,j+ 1

2

is determined by solving a Riemann problem in the y-direction with initial states
(qL

i,j+ 1
2

, qR
i,j+ 1

2

). In the case of conservative systems or piecewise-constant coefficients,

the total fluctuation terms AΔqi,j and BΔqi,j can be similarly determined by sum-
ming the left- and right-going fluctuations of an appropriate Riemann problem. Thus,
for instance, BΔqi,j is determined by solving a Riemann problem in the y-direction
with initial states (qR

i,j− 1
2

, qL
i,j+ 1

2

).

3. Numerical applications. In this section we present results of numerical
tests using the wave propagation methods just described. The examples included
are chosen to emphasize the advantages of the wave propagation approach. We make
some comparisons with the well-known second-order wave propagation code Clawpack
[24, 23].

3.1. Acoustics. In this section, the high-order wave propagation algorithm is
applied to the 1D equations of linear acoustics in piecewise homogeneous materials:

pt +K(x, y)(ux + vy) = 0,(3.1a)

ut +
1

ρ(x, y)
px = 0,(3.1b)

vt +
1

ρ(x, y)
py = 0.(3.1c)

Here p is the pressure and u, v are the x- and y-velocities, respectively. The coefficients
ρ and K, which vary in space, are the density and bulk modulus of the medium.
We will also refer to the sound speed c =

√
K/ρ. Notice that in general since ρ

varies in space, the last two equations above are not in conservation form. This test
case demonstrates that the proposed approach is able to solve hyperbolic system of
equations written in nonconservative form. Of course, this system can be written in
conservative form as follows:

εt − (ux + vy) = 0,(3.2a)

ρ(x, y)ut − (K(x, y)ε)x = 0,(3.2b)

ρ(x, y)vt − (K(x, y)ε)y = 0,(3.2c)
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where ε = −p/K is the strain. As we will see, the latter form may be advantageous
in terms of the accuracy that can be obtained.

The grid is chosen so that the material is homogeneous in each computational
cell, and an exact Riemann solver is used at each interface; for details of this solver
see, e.g., [11].

3.1.1. One-dimensional acoustics. We first consider 1D acoustic waves in a
piecewise-constant medium with a single interface. Namely, we solve (3.1) on the
interval x ∈ [−10, 10] with

(ρ, c) =

{
(ρl, cl), x < 0,

(ρr, cr), x > 0.

Wemeasure the convergence rate of the solution in order to verify the order of accuracy
for smooth solutions. The initial condition is a compact, six-times differentiable purely
right-moving pulse:

p(x, 0) =
((x− x0)− a)6((x − x0) + a)6

a12
ξ(x − x0),

u(x, 0) = p(x, 0)/Z(x),

where

ξ(x− x0) =

{
0 for |x− x0| > a,
1 for |x− x0| ≤ a,

with x0 = −4 and a = 1, and Z(x) =
√
K(x)ρ(x). This condition was chosen to

be sufficiently smooth to demonstrate the design order of the scheme and to give a
solution that is identically zero at the material interface at the initial and final times.

Table 1 shows L1 errors and convergence rates for propagation in a homogeneous
medium with ρl = cl = ρr = cr = 1. Here we use componentwise reconstruction.
Specifically, we compute

(3.3) EL1 = Δx
∑
i

|Qi − Q̄i|,

where Q̄i is a highly accurate solution cell average computed by characteristics or by
using a very fine grid. For the acoustics problems in this section, Q̄ is computed using
characteristics and adaptive Gauss quadrature. Table 1 indicates that in each case, the
order of convergence is approximately equal to the design order of the discretization.

Table 1

Errors for homogeneous acoustics test.

SharpClaw Clawpack

mx Error Order Error Order

200 3.60e-02 4.10e-02

400 3.65e-03 3.30 1.30e-02 1.66

800 1.85e-04 4.31 3.61e-03 1.85

1600 7.35e-06 4.65 8.94e-04 2.01D
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Table 2

Errors for acoustics interface with narrow pulse.

SharpClaw SharpClaw f -wave Clawpack

mx Error Order Error Order Error Order

200 2.10e-01 9.50e-02 1.98e-01

400 5.98e-02 1.81 1.42e-02 2.74 7.26e-02 1.45

800 1.25e-02 2.26 1.42e-03 3.32 2.21e-02 1.71

1600 1.17e-03 3.42 1.20e-04 3.56 7.86e-03 1.49

Table 3

L1 errors for acoustics interface problem with wide pulse (a = 4).

SharpClaw SharpClaw f -wave Clawpack

mx Error Order Error Order Error Order

200 9.67e-03 5.01e-03 5.23e-02

400 2.01e-03 2.27 4.63e-04 3.44 2.32e-02 1.17

800 4.89e-04 2.04 2.51e-05 4.36 1.09e-02 1.09

1600 1.22e-04 2.00 6.49e-07 5.12 5.26e-03 1.05

To test the accuracy in the presence of discontinuous coefficients we take

ρl = cl = 1, ρr = 4, cr = 1/2,

with an impedance ratio of Zr/Zl = 2. As was noted in [3], this system can also be
solved in the conservative form (3.2) using the f -wave approach. We include results
of this approach, where we have also performed characteristicwise rather than compo-
nentwise reconstruction. See Table 2. In this case all schemes exhibit a convergence
rate below the formal order, even though the initial and final solutions are smooth. To
investigate this further, we repeat the same test with a wider pulse by taking a = 4.
Results are shown in Table 3.

For the latter test, we observe a convergence rate of approximately two for Sharp-
Claw, one for Clawpack, and five for SharpClaw using the f -wave approach and char-
acteristicwise reconstruction. The last convergence rate is remarkable, considering
that the solution is not differentiable when it passes through the material interface.
Further investigation of the accuracy of this approach for more complicated problems
with discontinuous coefficients is ongoing. In tests not shown here, Clawpack achieves
approximately second-order accuracy when used with an f -wave Riemann solver for
this problem.

3.1.2. A two-dimensional sonic crystal. In this section we model sound
propagation in a sonic crystal. A sonic crystal is a periodic structure composed of
materials with different sound speeds and impedances. The periodic inhomogeneity
can give rise to bandgaps—frequency bands that are completely reflected by the crys-
tal. This phenomenon is widely utilized in photonics, but its significance for acoustics
has only recently been considered. Photonic crystals can be analyzed quite accurately
using analytic techniques, since they are essentially infinite size structures relative to
the wavelength of the waves of interest. In contrast, sonic crystals are typically only
a few wavelengths in size, so that the effects of their finite size cannot be neglected.
For more information on sonic crystals, see, for instance, the review paper [27].

We consider a square array of square rods in air with a plane wave disturbance
incident parallel to one of the axes of symmetry. The array is infinitely wide but only
eight periods deep. The lattice spacing is 10 cm and the rods have a cross-sectional

D
ow

nl
oa

de
d 

09
/1

7/
14

 to
 1

09
.1

71
.1

37
.2

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A366 D. I. KETCHESON, M. PARSANI, AND R. J. LEVEQUE

Fig. 3. Pressure in the sonic crystal for a long wavelength plane wave incident from the left.
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Fig. 4. Pressure in the sonic crystal for a long wavelength plane wave incident from the left.

Fig. 5. Snapshot of RMS pressure distribution in space in the sonic crystal for a plane wave
incident from the left.

side length of 4 cm, so that the filling fraction is 0.16. This crystal is similar to one
studied in [30], and it is expected that sound waves in the 1200–1800 Hz range will
experience severe attenuation in passing through it, while longer wavelengths will not
be significantly attenuated.

A numerical instability very similar to that observed in 1D simulations in [10, 11]
was observed when the standard Clawpack method was applied to this problem. The
fifth-order WENO method with characteristicwise limiting showed no such instability.

Figure 3 shows a snapshot of the root mean square (RMS) pressure distribution
in space for a plane wave with k = 15 incident from the left. The RMS pressure is
computed as follows:

pRMS(x, y) =

√
1

T

∫ t+T

t

p2(x, y, t)dt.(3.4)

This wave has a frequency of about 800 Hz, well below the partial bandgap. As
expected, the wave passes through the crystal without significant attenuation. In
Figure 4, the pressure is plotted along a slice in the x-direction approximately midway
between rows of rods.

Figure 5 shows a snapshot of the RMS pressure distribution in space for an
incident plane wave with frequency 1600 Hz inside the partial bandgap. Notice that
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Fig. 6. Snapshot of RMS pressure distribution in space in the sonic crystal along a slice.

the wave is almost entirely reflected, resulting in a standing wave in front of the
crystal. Figure 6 shows the RMS pressure along a slice in the x-direction.

3.2. Nonlinear elasticity in a spatially varying medium. In this section we
consider a more difficult test involving nonlinear wave propagation and many material
interfaces. This problem was considered previously in [20] and studied extensively
in [25]. Solitary waves were observed to arise from the interaction of nonlinearity and
an effective dispersion due to material interfaces in layered media.

Elastic compression waves in one dimension are governed by the equations

εt(x, t) − ux(x, t) = 0,(3.5a)

(ρ(x)u(x, t))t − σ(ε(x, t), x)x = 0,(3.5b)

where ε is the strain, u the velocity, ρ the density, and σ the stress. This is a
conservation law of the form (1.1), with

q(x, t) =

(
ε

ρ(x)u

)
, f(q, x) =

( −u
−σ(ε, x)

)
.

Note that the density and the stress-strain relationship vary in x. The Jacobian of
the flux function is

f ′(q) =
(

0 −1/ρ(x)
−σε(ε, x) 0

)
.

In the case of the linear stress-strain relation σ(x) = K(x)ε(x), (3.5) is equivalent
to the 1D form of the acoustics equations considered in the previous section.

We consider the piecewise constant medium studied in [20, 25]:

(ρ(x),K(x)) =

{
(1, 1) if j < x < (j + 1

2 ) for some integer j,
(4, 4) otherwise,

(3.6)
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(a) Strain.
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(b) Stress.

Fig. 7. Comparison of Clawpack (circles) and SharpClaw (squares) solutions of the stegoton
problem using 24 cells per layer. For clarity, only every third solution point is plotted. The black
line represents a very highly resolved solution.
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(a) SharpClaw.
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(b) Clawpack.

Fig. 8. Comparison of forward solution (black line) and time-reversed solution (symbols).

with exponential stress-strain relation

(3.7) σ(ε, x) = exp(K(x)ε) − 1.

The initial condition is uniformly zero, and the boundary condition at the left gener-
ates a half-cosine pulse.

We solve this problem using the f -wave solver developed in [20]. Figure 7 shows
a comparison of results using Clawpack and SharpClaw on this problem, with 24 cells
per layer. The SharpClaw results are significantly more accurate.

Solutions of (3.5) are time-reversible in the absence of shocks. As discussed in
[14, 16], the effective dispersion induced by material inhomogeneities suppresses the
formation of shocks, for small amplitude initial and boundary conditions, rendering
the solution time-reversible for very long times. This provides a useful numerical test.
We solve the stegoton problem numerically up to time T , then negate the velocity and
continue solving to time 2T . The solution at any time 2T − t0, with t0 ≤ T , should
be exactly equal to the solution at t0. We take T = 600 and t0 = 60. Figure 8(a)
shows the solution obtained using SharpClaw on a grid with 24 cells per layer. The
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t = 1140 solution (squares) is in excellent agreement with the t = 60 solution (solid
line). In fact, the maximum pointwise difference has magnitude less than 2 × 10−2.
Using a grid twice as fine, with 48 cells per layer, reduces the pointwise difference to
1 × 10−3. The Clawpack solution, computed on the same grid (24 cells per layer),
is shown in Figure 8(b). Again, the SharpClaw solution is noticeably more accurate.
For a more detailed study of this time-reversibility test, we refer the reader to [16].

3.3. Shallow water flow. The next example involves solution of the 2D shallow
water equations

ht + (hu)x + (hv)y = 0,(3.8a)

(hu)t +

(
1

2
hu2 +

1

2
gh2

)
x

+ (huv)y = −ghbx,(3.8b)

(hv)t + (huv)x +

(
1

2
hv2 +

1

2
gh2

)
y

= −ghby,(3.8c)

where h, u, and v are the depth of the fluid and the velocity components in the x-
and y-directions, respectively. The function b(x, y) is the bottom elevation and the
constant g represents gravitational acceleration.

Two test cases are presented: a radially symmetric dam-break problem over a flat
bottom and a small perturbation of a steady state over a hump. A Roe solver with
entropy fix is used in both cases.

3.3.1. Radial dam-break problem. This problem consists in computing the
flow induced by the instantaneous collapse of an idealized circular dam. It is widely
used to benchmark numerical methods designed to simulate interfacial flows and im-
pact problems.

The domain considered is [−1.25, 1.25]× [−1.25, 1.25]. The initial depth is

h(x, y, t = 0) =

{
2 for

√
x2 + y2 ≤ 1/2,

1 for
√
x2 + y2 > 1/2,

(3.9)

and the initial velocity is zero everywhere. This tests the ability of the method to
compute the 2D propagation of nonlinear waves and the extent to which symmetry is
preserved in the numerical solution. In the presence of radial symmetry, system (3.8)
can be recast in the following form:

ht + (hU)r = −hU
r
,(3.10a)

(hU)t +

(
1

2
hU2 +

1

2
gh2

)
r

= −hU
2

r
,(3.10b)

where h is still the depth of the fluid, whereas U and r are the radial velocity and the
radial position. An important feature of these equations is the presence of a source
term, which physically arises from the fact that the fluid is spreading out, and it is
impossible to have constant depth and constant nonzero radial velocity.

A first comparison between SharpClaw and Clawpack is performed by solving
the 1D system (3.10) on the interval 0 ≤ r ≤ 2.5. A wall boundary condition and
nonreflecting boundary condition are imposed at the left and the right boundaries,
respectively. The final time for the analysis is taken to be t = 1. The classical
q-wave Riemann solver based on the Roe linearization is used to solve the Riemann
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Fig. 9. Pointwise absolute error for the water height on a grid with 800 cells. Solid line:
SharpClaw solution; dashed line: Clawpack solution.

problem at each interface (see, for instance, [23] for details), where the left and the
right states are computed by using the characteristicwise WENO reconstruction. The
gravitational acceleration is set to g = 1. A highly resolved solution obtained with
Clawpack on a grids with 25,600 cells is used as a reference solution.

It is well known that high-order convergence is not observed in the presence of
shock waves [26], and typically the convergence rate is no greater than first order.
However, if we plot the difference between the computed solution available at the
cell’s center and the reference solution conservatively averaged on the same grid, i.e.,
Ei = |Qi − Q̄i|, then we can visualize where the errors are largest as well as their
spatial structure. Figure 9 shows this difference for the water height (h) on a grid
with 800 cells. The reference solution at t = 1 is shown by the solid line in Figure 10.
The largest errors in both solutions are near the shocks. In the smooth regions, the
SharpClaw solution is more accurate than that of the Clawpack code.

Next we consider the same problem using the full 2D equations (3.8). The Sharp-
Claw and Clawpack codes are tested on two grids with 125× 125 and 500× 500 cells.
The final time for the analysis is again taken to be t = 1.

Figure 10 shows the water height h computed with SharpClaw at each cell’s
center and t = 1.0 as a function of the radial position. The radius is measured with
respect to the center of the initial condition. The 1D reference solution used before is
also plotted for comparison. It can be seen that the scheme preserves a good radial
symmetry, though it cannot resolve the shock near the origin. The grid is in fact too
coarse. Clawpack results are not shown in this figure but indicate similar accuracy
and similarly good symmetry.

The solutions obtained on the finer grid (500× 500 cells) are shown in Figure 11.
The effect of the grid refinement is clearly visible. In fact, the solutions gets close
to the reference solution. However, the density of the grid near the origin is still too
coarse to resolve the shock near the origin to high accuracy.D
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Fig. 10. Solution for the 2D radial dam-break problem on a grid with 125 × 125 cells, plotted
as a function of radius.

Fig. 11. Solution for the 2D radial dam-break problem on a grid with 500 × 500 cells, plotted
as a function of radius.

3.3.2. Perturbation of a steady state solution. Conservation laws with
source terms often have steady states in which the flux gradient are nonzero but
exactly balanced by source terms. A good numerical scheme should be able to pre-
serve such steady states and accurately model small perturbations around these con-
ditions. A classical benchmark test case to investigate these properties is the small
perturbation of a 2D steady state water given by LeVeque [22].

System (3.8) is solved in a rectangular domain [0, 2] × [0, 1], with a bottom to-
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(a) Componentwise reconstruction.
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(b) f -wave-slope reconstruction.

Fig. 12. Contour of the surface level h + b at time t = 0.12 computed with componentwise
reconstruction and f-wave-slope reconstruction. Contour levels: 0.99942 : 0.000238 : 1.00656.

pography characterized by an ellipsoidal Gaussian hump:

b(x, y) = 0.8 exp(−5(x− 0.9)2 − 50(y − 0.5)2).

The surface is initially flat with h(x, y, 0) = 1 − b(x, y) except for 0.05 < x < 0.15,
where h is perturbed upward by ε = 0.01. The initial discharge in both directions
is zero, i.e., hu(x, y, 0) = hv(x, y, 0) = 0. Nonreflecting (i.e., zero-extrapolation)
conditions are imposed at all boundaries. The gravitational acceleration is set to
g = 9.81.

An effort was made to achieve a well-balanced scheme using the f -wave approach
combined with componentwise or characteristicwise WENO reconstruction, but this
was unsuccessful. This is not surprising, since the algorithm begins by reconstructing
a nonconstant function. Figure 12(a) shows the contour levels of the solution at
t = 0.12 on a fine grid with 600× 300 cells, obtained with the f -wave Riemann solver
and the componentwise reconstruction approach as a building block for the WENO
scheme. The scheme is not well balanced, and spurious waves are generated around
the hump. Similar results are obtained using characteristicwise reconstruction.

In order to balance the scheme, the f -wave-slope reconstruction introduced in

D
ow

nl
oa

de
d 

09
/1

7/
14

 to
 1

09
.1

71
.1

37
.2

10
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HIGH-ORDER WAVE PROPAGATION A373

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.988

0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006
Surface level at time t = 0.06000000, cross section along y=0.5

Fig. 13. Surface level h + b along a cross section at y = 0.5 and time t = 0.06. Solid line:
f-wave Riemann solver and componentwise reconstruction; dashed line: f-wave Riemann solver and
f-wave-slope reconstruction.

section 2.7 is used instead. In this approach, the WENO reconstruction is applied
to waves computed by solving the Riemann problem at the cell’s interface with the
f -wave solver. The bathymetry is approximated by a piecewise-constant function so
that its effect is concentrated at the cell interfaces. When the source term is included
in these Riemann problems, the resulting waves vanish, as shown in Figure 12(b).
Figure 13 shows the surface level along a cross section at y = 0.5 and time t = 0.06
computed with both reconstruction approaches (and the f -wave Riemann solver) on a
uniform mesh with 600× 300 cells. This comparison illustrates the different nature of
the two approaches. The f -wave-slope reconstruction method keeps the surface flat,
whereas the componentwise reconstruction introduces spurious waves which have an
amplitude of the order of the disturbance that we want to resolve.

Figure 14 shows the solution on two uniform meshes with 200 × 100 cells and
600×300 cells, computed using the f -wave-slope reconstruction approach. The results
clearly indicate that the detailed structure of the evolution of such a small perturba-
tion is resolved well even with the relatively coarse mesh. These results agree with
those reported in [22].

In order to investigate the accuracy of our scheme for smooth solutions, we also
have performed a convergence study at a fixed CFL of 0.3 for the same 2D problem.
The smooth initial perturbation is given by

h(x, y, t = 0) = exp(−50(x− 0.1)2)/100.(3.11)

The results of the convergence study are shown in Table 4. A highly resolved numer-
ical simulation computed with Clawpack on a 40,000× 20,000 grid has been used as
a reference solution. Since the bathymetry b(x, y) is approximated by a piecewise-
constant function, both discretizations are formally only second-order accurate, and
the results are roughly consistent with this. Nevertheless, the SharpClaw discretiza-
tion yields significantly more accurate results.
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Surface level at time t = 0.60000000

Fig. 14. Contour of the surface level h+ b. f-wave-slope reconstruction. 30 uniformly spaced
contour lines. t = 0.12 from 0.99942 to 1.00656; t = 0.24 from 0.99318 to 1.01659; t = 0.36 from
0.98814 to 1.01161; t = 0.48 from 0.99023 to 1.00508; t = 0.6 from 0.995144 to 1.00629. Left: results
with 200× 100 cells. Right: results with 600× 300 cells.

4. Conclusions. We have presented a general approach to extending the finite
volume wave propagation algorithm to high-order accuracy in one and two dimen-
sions. The algorithm is based on a method-of-lines approach, wherein the semidiscrete
scheme relies on high-order reconstruction and computation of fluctuations, including
a total fluctuation term arising inside each cell. By using WENO reconstruction and
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Table 4

Convergence results for the smooth initial condition (3.11). L2-norm of the error as a function
of the grid spacing.

SharpClaw Clawpack

Δx = Δy Error Order Error Order

1/10 1.14e-2 2.78e-2

1/20 7.00e-3 0.70 2.09e-2 0.41

1/100 8.11e-4 1.34 6.33e-3 0.74

1/200 3.24e-4 1.32 2.40e-3 1.40

1/1000 2.93e-5 1.49 1.43e-4 1.75

1/2000 5.94e-6 2.30 3.81e-5 1.91

strong-stability-preserving time integration, high-order accurate nonoscillatory results
are obtained, as demonstrated through a variety of test problems.

This algorithm has several desirable features. Like the second-order wave propaga-
tion algorithms in Clawpack [21], it is applicable to hyperbolic PDEs, including linear
nonconservative systems and nonlinear systems with spatially varying flux function.
It has been shown to achieve high-order accuracy even for problems with discontinu-
ous coefficients. Finally, the algorithm can be adapted to give a well-balanced scheme
for balance laws by use of the f -wave approach and a new wave-slope reconstruction
technique.

Hyperbolic systems of equations with both smooth and nonsmooth solutions have
been used to test the properties and the capabilities of the proposed method. The
schemes have been compared for linear acoustics and nonlinear elasticity problems in
heterogeneous media and for the shallow water equations with and without bottom
topography. Two types of Riemann solver have been used, i.e., the classical (q-)wave
algorithm and the f -wave approach. The new scheme performed well for all the test
cases. It gives significantly better accuracy than Clawpack (on the same grid) for
smooth problems.

A drawback of our implementation of well-balancing is that it requires the effect
of the source term to be approximated entirely at the cell interfaces. For shallow wa-
ter equations with smooth bathymetry, this will reduce the formal accuracy to second
order. Future work might explore the implementation of higher order accurate well-
balancing for polynomial source terms using high-order quadrature. In any case, in
two dimensions, the presented dimension-by-dimension reconstruction approach is for-
mally only second-order accurate (see [34]); however, it gives improved accuracy over
the second-order scheme implemented in Clawpack for the test problems considered.
Further investigation of different approaches to multidimensional reconstruction for
problems containing both shocks and rich smooth flow structures is a topic of future
research.
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