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Abstract. Development of scientific software involves tradeoffs between ease of use, generality,
and performance. We describe the design of a general hyperbolic PDE solver that can be operated
with the convenience of MATLAB yet achieves efficiency near that of hand-coded Fortran and scales
to the largest supercomputers. This is achieved by using Python for most of the code while employ-
ing automatically wrapped Fortran kernels for computationally intensive routines, and using Python
bindings to interface with a parallel computing library and other numerical packages. The software
described here is PyClaw, a Python-based structured grid solver for general systems of hyperbolic
PDEs [K. T. Mandli et al., PyClaw Software, Version 1.0, http://numerics.kaust.edu.sa/pyclaw/
(2011)]. PyClaw provides a powerful and intuitive interface to the algorithms of the existing For-
tran codes Clawpack and SharpClaw, simplifying code development and use while providing massive
parallelism and scalable solvers via the PETSc library. The package is further augmented by use
of PyWENO for generation of efficient high-order weighted essentially nonoscillatory reconstruc-
tion code. The simplicity, capability, and performance of this approach are demonstrated through
application to example problems in shallow water flow, compressible flow, and elasticity.
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1. Introduction. Traditionally, scientific codes have been developed in compiled
languages like Fortran or C. There exists an abundance of well-tested, efficient, often
serial implementations of numerical algorithms in those languages. It is often desirable
to parallelize and extend such codes with new algorithmic components in order to
apply them to increasingly challenging problems.

More recently, high-level scientific programming languages, such as MATLAB,
IDL, and R, have also become an important platform for numerical codes. These
languages offer powerful advantages: they allow code to be written in a language
more familiar to scientists, and they permit development to occur in an evolutionary
fashion. Problem parameters can be specified, and plotting can be performed interac-
tively, bypassing the comparatively slow edit/compile/run/plot cycle of development
in Fortran or C [23]. However, programs written in such high-level languages are not
portable to high performance computing platforms and may be very slow compared
to compiled code.
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We present one approach to leveraging the advantages of both kinds of languages.
Our starting point is Clawpack [16]: a widely used, state-of-the-art package for solving
hyperbolic systems of PDEs, such as those arising in fluid mechanics, astrophysics,
geodynamics, magnetohydrodynamics, oceanography, porous media flow, and numer-
ous other fields. In this paper we present PyClaw, a package that brings greater
accessibility, flexibility, and parallelization to Clawpack and related packages. Py-
Claw is used as an illustration to describe, demonstrate, and provide support for a
particular approach to construction of scientific software. The approach we advocate
consists of three steps:

(i) use Python to create a convenient interface to serial legacy code;
(ii) use Python to interface the resulting code with software tools for paralleliza-

tion of the code, with minimal modification of the serial legacy code;
(iii) use Python to interface the resulting parallel code to other packages that

provide extended functionality.
In the case of PyClaw, (i) consists of a Python interface to the Clawpack and Sharp-
Claw Fortran-based packages for numerical solution of systems of hyperbolic PDEs.
This interface allows the code to be operated in the same convenient and interactive
way that one works with MATLAB. In step (ii), PyClaw was parallelized by inter-
facing with PETSc, a state-of-the-art library for parallel scientific computing. This
enables parallel computation that scales to large supercomputers and achieves on-core
performance close to that of the legacy code. Finally, step (iii) is illustrated in that
PyClaw was interfaced with PyWENO, to increase the available order of accuracy of
numerical approximation. A key in all three steps is the use of the numerical Python
package numpy [22]. The idea of using a layer of numpy-based Python code on top
of Fortran, C, or C++ kernels to solve PDEs has become increasingly popular over
the past several years; see, for instance, [19, 6]. We consider PyClaw to be a very
convincing case study.

PyClaw is one of the most highly scalable Python-based codes available. Per-
haps the first well-known scientific project to provide a parallel solver in Python is
GPAW, which extends the Python interpreter itself with parallel data structures and
algorithms for electronic structure calculations [20]. Python has also previously been
used as a tool for parallelizing Fortran and C codes by introducing parallel code in a
Python layer that also calls the Fortran/C kernels [21]. In the FiPy package, paral-
lelism is achieved by using an existing parallel library (Trilinos) through its Python
bindings [6]. PyClaw takes an approach similar to that of FiPy, in which all paral-
lel operations over distributed-memory processes are handled by the PETSc library
through the petsc4py Python package (http://code.google.com/p/petsc4py/). This
approach offers the advantages of utilizing a documented, well-designed abstract par-
allel interface for developers that is already known to achieve excellent scaling on
many architectures.

The algorithms of Clawpack and its high-order extension, SharpClaw, are de-
scribed in section 2. The PyClaw framework is described in section 3. Section 4
describes the parallelization of PyClaw. As demonstrated in section 5, PyClaw main-
tains both the serial performance of Clawpack and the parallel scalability of PETSc.
In section 6, we briefly highlight some of the software development practices that have
contributed to the success of PyClaw. The combination of wave propagation algo-
rithms and scalable parallelization enables efficient solution of interesting scientific
problems, as demonstrated through three examples in section 7.

A repository containing the data, software, and hardware environments for repro-
ducing all experimental results and figures in this paper is available online (http://
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bitbucket.org/ahmadia/pyclaw-sisc-rr). The most recent release of the PyClaw code
is hosted at http://github.com/clawpack/pyclaw and can be installed alongside its
dependencies in the clawpack distribution in a few minutes with the following pip
commands (pip is a freely available Python package installer and manager):

Listing 1: Installing the most recent release of PyClaw and its dependencies
1 pip install numpy
2 pip install clawpack

The petsc4py package is not an explicit dependency of PyClaw, but if it has been
installed, the PetClaw parallel extension described in section 4 is seamlessly enabled.

It is our hope that readers will download and try the code. To whet the reader’s
appetite, an example of a complete PyClaw program is shown in Listing 2. This exam-
ple sets up, runs, and plots the solution of a two-dimensional inviscid fluid dynamics
problem (specifically, test case 6 of [13]):

Listing 2: Solution of a 2D Euler Riemann problem
1 from clawpack import pyclaw
2 from clawpack import riemann
3 # Define the equations and the solution algorithm
4 solver = pyclaw .ClawSolver2D(riemann .rp2_euler_4wave)
5 # Define the problem domain
6 domain = pyclaw .Domain ([0. ,0.] ,[1. ,1.] ,[100 ,100])
7 solver .all_bcs = pyclaw .BC.extrap
8 solution = pyclaw .Solution (solver .num_eqn ,domain )
9 # Set physical parameters

10 gamma = 1.4
11 solution . problem_data[’gamma ’] = gamma
12 # Set initial data
13 xx,yy = domain .grid.p_centers
14 l = xx <0.5; r = xx >=0.5; b = yy <0.5; t = yy >=0.5
15 solution .q[0 ,...] = 2.* l*t + 1.* l*b + 1.*r*t + 3.*r*b
16 solution .q[1 ,...] = 0.75*t - 0.75*b
17 solution .q[2 ,...] = 0.5*l - 0.5*r
18 solution .q[3 ,...] = 0.5* solution .q[0 ,...]* \
19 (solution .q[1 ,...]**2+ solution .q[2 ,...]**2) \
20 + 1./( gamma -1.)
21 # Solve
22 solver .evolve_to_time(solution ,tend =0.3)
23 # Plot
24 pyclaw .plot.interactive_plot()

2. Finite volume hyperbolic PDE solvers. The numerical methods in Py-
Claw compute approximate solutions of systems of hyperbolic conservation laws:

κ(x)qt +∇ · f(q,x)x = s(q,x).(2.1)

Here q(x, t) is a vector of conserved quantities (e.g., density, momentum, energy) and
f(q,x) represents the flux (modeling wave-like phenomena), while s(q,x) represents
additional nonhyperbolic source terms, such as diffusion or chemical reactions. The
capacity function κ(x) is frequently useful for taking into account variations in material
properties or in the use of nonuniform grids (see [15, Chapter 6]). Here we describe
high-resolution shock capturing methods, which is one of the most successful classes
of numerical methods for solving (2.1).

Computing solutions to nonlinear hyperbolic equations is often costly. Solutions
of (2.1) generically develop singularities (shocks) in finite time, even if the initial data
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are smooth. Accurate modeling of solutions with shocks or strong convective character
requires computationally expensive techniques, such as Riemann solvers and nonlinear
limiters.

In a finite volume method, the unknowns at time level tn are taken to be the
averages of q over each cell:

Qn
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

q(x, tn) dx,(2.2)

where ∆x = xi+ 1
2
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2
and i are the local grid spacing and the cell’s index, respec-

tively. A simple update of the cell averages based on the resulting waves gives the
classic Godunov method, a robust but only first-order accurate numerical scheme:
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where F and∆t are the numerical flux function and the time step. Godunov’s method
results from taking a particular choice of F referred to as the upwind flux.

The first-order method just described is very dissipative. Higher-order exten-
sions require the computation of higher derivatives of the solution or flux. Near a
solution discontinuity, or shock, spurious oscillations tend to arise due to dispersion
and numerical differencing across the discontinuity. In order to combat this, shock-
capturing methods use special nonlinear algorithms to compute numerical derivatives
in a nonoscillatory way by limiting the the value of the computed derivative in the
vicinity of a discontinuity [15].

The classic Clawpack algorithm is based on the second-order Lax–Wendroff dif-
ference scheme that was later extended by LeVeque [14, 15]. This scheme can be
written in the flux-differencing form (2.3) by an appropriate choice of numerical flux,
which has the form

Fn
i− 1

2
= Fupwind + Fcorrection,(2.4)

where Fupwind is the Godunov flux. The classic Clawpack algorithm is based on mod-
ifying (2.4) by applying a limiter to Fcorrection. However, in LeVeque’s extension,
rather than applying the limiter to the flux variables, the limiter is applied directly to
the waves computed by the Riemann solver. This allows for better accuracy by lim-
iting only the characteristic families that are discontinuous in a given neighborhood.
Furthermore, the first-order contribution is written in terms of fluctuations (which
approximate the quasi-linear term Aqx) rather than fluxes (which approximate f(q)).
This allows the algorithm to be applied to hyperbolic systems not in conservation
form.

While the Lax–Wendroff approach can be extended to even higher order, this
is cumbersome because of the large number of high-order terms appearing in the
Taylor series. A simpler alternative is the method of lines, in which the spatial
derivatives are discretized first, leading to a system of ODEs that can be solved by
traditional methods. This is the approach taken in SharpClaw [10, 9, 11]. First, a
nonoscillatory approximation of the solution is reconstructed from the cell averages
to give high-order accurate point values just to the left and right of each cell interface.
This reconstruction is performed using weighted essentially nonoscillatory (WENO)
reconstruction in order to avoid spurious oscillations near discontinuities. As in the
classic Clawpack algorithm, the scheme is written in terms of fluctuations rather than
fluxes, so that it can be applied to nonconservative problems.
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2.1. Clawpack and SharpClaw. We now describe the “legacy” Fortran codes
on which PyClaw is built.

The classic algorithm implemented in Clawpack (“Conservation Laws Package”)
includes extensions to two and three dimensions, adaptive mesh refinement, and other
enhancements [16]. The unsplit multidimensional Clawpack algorithms include addi-
tional correction terms, computed by a secondary “transverse” Riemann solver, which
approximates corner transport terms. The Clawpack software (http://www.clawpack.
org) and its extensions, consisting of open source Fortran code, have been freely avail-
able since 1994. More than 7,000 users have registered to download Clawpack.

Clawpack is a very general tool in the sense that it is easily adapted to solve any
hyperbolic system of conservation laws. The only specialized code required in order
to solve a particular hyperbolic system is the Riemann solver routine. A wide range
of Riemann solvers, including several for the most widely studied hyperbolic systems,
have been developed by Clawpack users and are also freely available. Clawpack han-
dles not only simple Cartesian grids but any logically quadrilateral grid, provided
that there is a map from a uniform Cartesian domain to the desired physical domain
(see section 7.1). Nonhyperbolic source terms (s(q,x)) can be easily included via
operator splitting. For more examples and details regarding Clawpack, see [14] and
[15, Chapter 23].

The high-order WENO-based wave propagation method is implemented in Sharp-
Claw, another Fortran package designed similarly to Clawpack and which makes use
of the same Riemann solver routines. The default options in SharpClaw employ fifth-
order WENO reconstruction in space and the fourth-order strong stability preserving
(SSP) Runge–Kutta method of [8] in time. In multidimensions SharpClaw requires
propagation of waves only in the normal direction to each edge.

3. PyClaw. PyClaw is an object-oriented framework that incorporates the func-
tionality of Clawpack and SharpClaw. This functionality may be provided via either
pure Python or calls made to the underlying Fortran routines included in Clawpack
and SharpClaw. PyClaw is designed such that the user provides appropriate call-
back functions, such as a Riemann solver, that describe and implement the problem
in question. PyClaw then manages the “main” routine, including appropriate time
stepping and output. It also avoids the need to deal with strictly formatted data files
and reduces the need to write custom Fortran routines for new problems. Instead,
problems can be set up interactively or in a simple scripting language. PyClaw also
allows for simulation and visualization to be done in a single, interactive environment.
Users may engage with this framework at different levels, depending on their expertise
and requirements. These interfaces are described in section 3.1.

PyClaw wraps the full functionality of the “classic” one-dimensional (1D), two-
dimensional (2D), and three-dimensional (3D) Clawpack code, including the use of
capacity functions, mapped grids, and both dimensionally split and fully multidimen-
sional algorithms. It also provides the full functionality of SharpClaw and adds to this
with higher-order WENO reconstruction. It does not presently include adaptive mesh
refinement, which is part of the AMRClaw and GeoClaw extensions of Clawpack.

3.1. Interfaces. The PyClaw distribution includes prewritten application
scripts that solve problems in acoustics, elasticity, compressible flow, shallow water
flow, and other application domains. These application scripts represent the typical
“main” routines that lower-level language developers are used to and are written with
ease of understanding as their most important goal. These scripts run both on se-
rial workstations and from batch processing queues for, e.g., 8,000-node parallel jobs
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without modification. Novice users can solve a wide range of problems by modify-
ing the example scripts to deal with different domains, initial conditions, boundary
conditions, and so forth. This requires only a simple understanding of high-level
scripting code but allows users to compute solutions of complex problems on large
supercomputers. The scripts for the applications in this paper have all been added to
the distributed examples, and we plan to continue this practice with respect to future
publications that use PyClaw.

Novice or advanced users may also run problems and analyze results in an inter-
active shell. When Python is invoked with standard input connected to a tty device,
it reads and executes commands interactively. This feature simplifies serial devel-
opment, debugging, and visualization and is familiar to users of commercial software
such as MATLAB and Mathematica. PyClaw’s top level classes present the same API
whether used in serial or parallel, allowing users to develop interactively and then run
production jobs in batch environments.

Advanced users may want to solve a hyperbolic system that is not included among
the example applications. In Clawpack a number of Riemann solvers have been writ-
ten for specific systems and are included with Clawpack. Since PyClaw and Clawpack
Riemann solvers are interoperable, many systems of interest have already been imple-
mented and can be used immediately in PyClaw. A user also has the option of writing
his/her own Riemann solver in Fortran which can then be utilized in Clawpack as well
as PyClaw. Clawpack users who wish to run an existing serial Clawpack application
in parallel can do so easily by wrapping any problem-specific Fortran routines (such
as those that set initial conditions or compute source terms) automatically with f2py
and using the resulting Python function handles in PyClaw.

Numerical analysts are often interested in comparing solutions of a problem ob-
tained with different methods or different values of method parameters. The sam-
ple application scripts provide a common functional interface that can be accessed
from the command line for selecting between solvers, choosing serial or parallel com-
putation, and other options. Users are free to extend this interface to allow more
programmatic flexibility at the command line or from within a batch environment.
PyClaw also fully exposes the full range of command line options available from the
underlying PETSc library, allowing advanced users to tweak low-level settings such
as message-passing communication strategies.

Frequently, research scientists are interested in comparing the performance of
numerical methods. PyClaw enables this comparison by allowing scientific developers
to extend the software with a new Solver class. The Solver class, described in the next
section, is responsible for prescribing a single time step of the numerical algorithm.
In PyClaw this is accomplished by implementing a homogeneous_step routine which
evolves the solution of the PDE from time t to t+∆t. Since most existing codes have
such a routine already, it is often straightforward to include legacy code in the PyClaw
framework by simply wrapping this function. Nonhyperbolic terms s(q,x) can also
be incorporated via operator splitting. This is the most common way to extend the
Solver class and allows for easy comparison between different numerical methods.

3.2. Classes. The primary abstractions used in PyClaw are the Solver and the
Solution. The Solver class provides an abstract interface to evolve a Solution object
forward in time. The Solution class is a data abstraction containing information about
the domain of the PDE and the state of the solution at a particular time inside the
domain. Here we will discuss these classes and how they interact.

The role of the Solver is illustrated in Figure 3.1(b). The Solver class prescribes
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Solution

Dimension x

Dimension y

Grid 1

Dimension x
Grid 2

State A
q aux

State B
q

State C
q aux

(a) Structure of a PyClaw Solution object,
which may contain multiple Grid objects,
each of which may have multiple associated
State objects. Each State object has associ-
ated fields of conserved quantities (e.g., den-
sity, momentum) and, optionally, associated
auxiliary property fields.

(b) Role of Solver object. The Solver acts on
a Solution object in order to evolve it to a
later time.

Fig. 3.1. Structure and function of the main PyClaw classes.

how a State Qn is evolved forward in time to obtain Qn+1; in general this consists of
three steps:

(i) set ghost cell values based on the prescribed boundary conditions;
(ii) advance the solution based on the hyperbolic terms (i.e., qt+∇ · f(q,x) = 0);
(iii) advance the solution based on the source term s(q,x) (if present) by a

fractional-step approach [15, Chapter 17].
The base Solver class implements the basic interface to each of these functions, and
a subclass of the Solver class is expected to implement the appropriate functions de-
pending on the numerical method being implemented. The Solver class is sufficiently
abstract to accommodate algorithms that are based on the method of lines, such as
SharpClaw, as well as algorithms that are not, such as Clawpack.

The Solution class, depicted in Figure 3.1(a), has two purposes:
• describe the problem domain;
• keep track of the values of the state variables Qn and PDE coefficients.

Like Clawpack, PyClaw simulations are always based on a computational domain
composed of tensor products of 1D equispaced discretizations of space. More general
physical domains may be used as long as it is possible to map them to that com-
putational domain. PyClaw includes a set of geometry classes that implement these
abstractions.

The solution values Qn and the PDE coefficients are contained in numpy arrays
stored in the Solution object. Thus the full Solution class represents a snapshot of
the gridded data. The class acts as a container object with one or more Grid and
State objects such as in the case of adaptive mesh refinement or nested grids, both
of which are possible with Clawpack algorithms though not yet available in PyClaw.
This hierarchical class structure allows the underlying data and algorithms to be
modified without the knowledge of the interacting objects and without changing the
interface presented to the user. An example of this is the PetClaw State object, which
reimplements State functionality over distributed memory. In the future, we intend
to provide State objects that implement other strategies for accelerating performance.

3.3. Extension using PyWENO. One of the principal achievements of Py-
Claw has been to facilitate the extension of Clawpack and SharpClaw by interfacing
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with other packages. For example, PyWENO [3] has been used to add much higher
order functionality to the existing SharpClaw code, within PyClaw.

The Fortran code SharpClaw contains only fifth-order WENO routines for eval-
uation at cell interfaces. New WENO routines for PyClaw were generated by Py-
WENO, which is a standalone package for building custom WENO codes. For a
given (arbitrarily high) order of reconstruction, PyWENO symbolically computes the
smoothness coefficients, reconstruction coefficients, and optimal (linear) weights of
the WENO method. From these symbolic results, PyWENO generates Fortran ker-
nels that perform the WENO reconstructions (it can also generate C and OpenCL
kernels). The generated kernels can optionally perform individual steps of the recon-
struction process (i.e., computing smoothness indicators, nonlinear weights, or the
final reconstruction) or combinations thereof. This affords authors some flexibility
in avoiding redundant computations or minimizing memory allocations and accesses.
Furthermore, the points within each cell at which the WENO reconstruction is per-
formed are also arbitrary. Negative weights are automatically split into positive and
negative parts [26], allowing PyWENO to generate kernels for routines for arbitrary
sets of points (such as arbitrary-order Gauss–Legendre quadrature points).

For PyClaw, odd-order WENO routines for approximating the solution at the
left and right edges of each cell were generated from fifth to seventeenth order. All
aspects of the WENO reconstruction are wrapped into standalone subroutines, and
no temporary work arrays are allocated. Using these routines is trivially easy; for
instance, to use the ninth-order WENO method instead of the classic algorithm in
Listing 2 one need only replace line 9 by the following two lines:

Listing 3: Using SharpClaw (with PyWENO)
1 solver = pyclaw .SharpClawSolver1D ()
2 solver .weno_order = 9

4. Parallelization. Like many finite difference and finite volume codes, Claw-
pack and SharpClaw implement boundary conditions through the use of ghost cells.
In this approach, fictitious layers of cells are added around the edge of the problem
domain; the number of layers depends on the width of the stencil of the numerical
scheme. At the beginning of each step, the ghost cell values are set to satisfy the spec-
ified boundary conditions. Then the numerical scheme is applied on all the interior
(nonghost) cells. Many types of boundary conditions can be handled well in this man-
ner, including periodicity, reflection, and outflow (nonreflecting). Custom boundary
conditions may also be specified, for instance to model time-dependent inflow.

This approach is highly amenable to parallelization since it is based on the idea
that information at the edge of a domain is filled in by a routine that is independent
of the rest of the numerical scheme. Therefore, the serial kernels can be applied on
each processor of a distributed parallel machine as long as some routine first fills the
ghost cells on the processor either by appeal to boundary conditions or through com-
munication with neighboring processors, as appropriate. Only this ghost cell routine
needs to know the global topology of the problem; the serial kernels operate based
entirely on local information. This orthogonality allows independent development of
serial numerical schemes and parallel communication patterns, and it is a key strategy
in combining the work of computational mathematicians and computer scientists.

The same global-local decomposition is employed in PETSc. The PETSc library
includes a DMDA object that implements parallelization through the use of ghost
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Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4
Proc 0 Proc 1

Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10
Proc 0 Proc 1
Global numbering

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X
Proc 0 Proc 1
Local numbering

Fig. 4.1. A simple 5 × 6 structured mesh is represented using a DMDA. The leftmost figure
shows the natural numbering of unknowns, used, for instance, by most visualization packages, which
is independent of the parallel layout. The middle figure shows the PETSc global numbering of
unknowns, which is contiguous for each process. The rightmost figure shows the local numbering of
unknowns for process 0, which includes ghost unknowns shared with neighboring processes.

cells. The DMDA is a highly scalable class for data layout across parallel, structured
grids. All storage allocation and communication of ghost values is handled by the
DMDA, but storage is returned to the PyClaw program as numpy arrays so that no
code changes are necessary and the user experience is identical. In Figure 4.1, we
show three different representations of data over a simple 5× 6 structured grid. The
global ordering is used as input to PETSc linear and nonlinear solvers, whereas the
natural ordering is used for output since it is independent of the particular parallel
partition. Local ordering is used to extract data over a “halo” region, including ghost
unknowns shared with other processes.

This is, in fact, how PyClaw makes use of the DMDA structure. Local vectors are
extracted with a given number of overlap unknowns, and computations are performed
using the same serial routines. These local vectors are then used to update a global
vector, and PETSc performs the appropriate accumulation for shared unknowns. This
simple mechanism in PETSc for integrating local and global data (which works also
for unstructured grids) allows easy parallelization. Thus PyClaw relies on Clawpack
and SharpClaw to provide computational kernels for time-dependent nonlinear wave
propagation and on PETSc (through petsc4py) to manage distributed data arrays
and the communication between them. The data structures in PETSc and Clawpack/
SharpClaw are directly interfaced through the Python package numpy [22].

The parallel extension of PyClaw consists of only about 300 lines of Python code.
Any PyClaw script can be run in parallel simply by replacing the statement from
clawpack import pyclaw with

Listing 4: Running in parallel
1 from clawpack import petclaw as pyclaw

and invoking the Python script with mpirun.
The serial PyClaw routines handle discretization, Riemann solves, limiting, and

reconstruction since they depend only on local data. PETSc handles parallel layout
and communication but has no information about the local computations. PETSc
allows fine-grained control of the ghost value communication patterns so that parallel
performance can be tuned to different supercomputing architectures, but by default
a user does not need to manage parallelism or see PETSc code. In fact, the PetClaw
user is shielded from PETSc in much the same way that a PETSc user is shielded from
MPI. This separation can enable future development. For instance, an unstructured
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mesh topology of hexahedral elements could be managed by PETSc, using a Riemann
solver which could accommodate deformed elements, without changes to PyClaw.

In addition to communication of ghost cell values, parallel hyperbolic solvers
require communication of the maximum wave speed occurring on each processor in
order to check whether a prescribed stability condition (generally phrased in terms
of the Courant number) has been satisfied and choose the size of the next time step
appropriately. This is also handled by a single PETSc call.

Although the basic Clawpack and SharpClaw algorithms are explicit and require
no algebraic solver, a powerful advantage gained by using PETSc for parallelization
is the possibility of employing PETSc’s solvers for implicit integration of hyperbolic
problems that are stiff due to source terms or fast waves that do not need to be
accurately resolved. This is the subject of ongoing work.

A particular challenge of using Python is that most parallel debuggers support
only C or Fortran, making parallel debugging of Python codes difficult [4]. This is
yet another motivation for using a tested parallel library like PETSc.

5. Performance. A few previous works have considered efficiency of scientific
Python codes in serial as well as in parallel; see, for instance, [1, 12, 21, 4]. Those
studies consisted mainly of simple code snippets run in serial or on up to a few
dozen processors until the recent work [4], which includes scalability studies up to
16,384 cores. In this section, we investigate the efficiency of a full object-oriented
Python framework (PyClaw) compared with hand-coded Fortran (Clawpack). We
also consider the scaling of PetClaw on all 65,536 cores of the Shaheen supercomputer
at KAUST.

We consider only the second-order classic Clawpack algorithm here, as we are
mainly interested in the effect of using a Python framework (in the serial case) and
the cost of communication (in the parallel case). In terms of these factors, roughly
similar results may be expected for the performance of the higher-order algorithms,
and preliminary tests (not described here) indicate good scaling of those also.

5.1. Serial performance. For a detailed serial performance comparison of an
explicit stencil-based PDE code in Python, see [12]. In that work, vectorized numpy
code was found to be fast enough for some operations, while wrapped Fortran loops
performed identically to a pure Fortran code. In contrast to the simple kernel code
considered there, we present tests of a full object-oriented solver framework. Our
results thus extend those of [12], providing an indication of the efficiency that can be
expected for a sophisticated Python-based PDE solver framework.

Table 5.1 shows an on-core serial comparison between the Fortran-only Claw-
pack code and the corresponding hybrid PyClaw implementation for two systems of
equations on two different platforms. The hyperbolic systems considered are the 2D
linear acoustics equation and the 2D shallow water equations [15]. The acoustics test
involves a very simple Riemann solver (amounting to a 3× 3 matrix-vector multiply)
and is intended to provide an upper bound on the performance loss arising from the
Python code overhead. The shallow water test involves a more typical, costly Rie-
mann solver (specifically, a Roe solver with an entropy fix) and should be considered
as more representative of realistic nonlinear application problems. Clawpack and Py-
Claw rely on similar Fortran kernels that differ only in the array layout. Because
most of the computational cost is in executing the low-level Fortran kernels, the dif-
ference in performance is relatively small—though not negligible. The results for the
shallow water equations are in rough agreement with the 10% overhead reported in
[4]. A 10–30% increase in computational time (for realistic applications) seems well
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Table 5.1
Timing results (in seconds) for on-core serial experiments solving acoustics and shallow wa-

ter problems implemented in both Clawpack and PyClaw on Intel Xeon and the IBM BlueGene/P
PowerPC 450 processors.

Application Processor Clawpack PyClaw Ratio

Acoustics
Intel Xeon 28s 41s 1.5

PowerPC 450 192s 316s 1.6

Shallow Water
Intel Xeon 79s 99s 1.3

PowerPC 450 714s 800s 1.1

worth the advantages provided by the use of Python (in particular, easy parallelism).
The overhead is expected to be even smaller for more complex systems or in three
dimensions.

5.2. Parallel performance. We now investigate the parallel performance of
PetClaw on the Shaheen supercomputer at KAUST, an IBM BlueGene/P system
consisting of 65,536 cores. When characterizing the performance of scientific codes on
supercomputers, a commonly used characterization is that of weak scalability, which
is assessed by studying how the run time of the code is affected when the resolution of
the simulation and the number of processors is increased commensurately to maintain
a fixed amount of work per processor. The parallel efficiency is given by dividing
the run time of the single processor job by the run time of the parallel job.

The problem used for the comparisons is of a compressible, inviscid flow that
consists of a shock impacting a low-density bubble (examined in detail in section 7.2).
We investigate weak scaling by running the problem for a fixed number of time steps
and with a fixed number of grid cells (400× 400 = 160,000) per core, while increasing
the number of cores from one up to the whole machine. Figure 5.1 shows the results,
with parallel efficiency provided in the last row. It is important to note that the time
required to load the necessary Python packages and shared objects, which occurs
only once at the beginning of a simulation (or series of batch simulations), has been
excluded from the results presented here. This load time is discussed in the next
section.

Observe that in all parallel runs, more than 90% of the time is spent in the com-
putational kernels. The parallel operations scale extremely well: the CFL condition-
related reduction takes essentially the same amount of time for all runs from 16 pro-
cessors up, as does the communication of ghost cell values in localToGlobal. Together
these parallel operations consume about 6% of the total run time. Parallel initializa-
tion consists of PETSc parallel object construction, including memory allocation and
MPI communicator initialization. Note that the parallel initialization, while signifi-
cant in these artificial test runs, will not contribute significantly to the cost of real
simulations because it is a one-time cost.

5.3. Dynamic loading. As alluded to already, the work of loading Python li-
braries and objects dynamically at run time does not currently scale well on the
Shaheen system. Large-scale supercomputers such as Shaheen rely on parallel file
systems that are designed to support large distributed loads, with each process inde-
pendently accessing data. Dynamic loading does not follow this pattern because every
process is attempting to access the same data simultaneously. This issue was partially
addressed in [4], but an implementation capable of supporting dynamic library loading
is still lacking.

The dynamic loading time for the PetClaw runs in section 7 is less than 5% of
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Fig. 5.1. Weak scaling performance profile of the shock bubble problem with 160,000 grid cells
per core.

the total simulation time, and this will generally be the case for 2D wave propaga-
tion problems because the CFL condition means that large simulations of hyperbolic
problems necessarily require long run times in order for waves to propagate across the
full domain.

6. Software development practices. The majority of software development
practices utilized in PyClaw are inherited from the open source software community.
The community’s atmosphere of free and open sharing complements the tradition of
scientific inquiry. In fact, growing movements within the scientific community seek to
embrace scientific reproducibility for software tools used in conducting mathematical
and scientific research [5, 27].

In addition to making our results reproducible, we also intend that our software
be useful as a reference for understanding numerical methods involved in solving
hyperbolic PDEs and as a platform for extending and applying these techniques. As
such, we also seek to provide a friendly and inviting context for scientists working in
this cross-disciplinary environment to conduct their research.
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6.1. Application tests. The goal of reproducibility in research is to improve
not only confidence in results but their extensibility as well. A series of regression
tests have been devised for every major application where PyClaw has been used. The
script and parameters for generating the test are stored in the repository (typically
in a single file), along with verified output from a successful run. Where possible, the
output is verified against a different solver implementation or by analysis. These “ap-
plication tests” produce the same output regardless of the choice of solver type, kernel
implementation, or computer architecture. The python-nose unit testing framework
simplifies development and selective execution of the tests. Programmatic test code
generation is used to exercise the full range of solver and kernel options for each test.
Scientific results are archived as application tests within the unit testing framework,
ensuring that our published results are reproducible in current and future versions of
the PyClaw solver.

In our experience, the application tests are the single greatest factor in facilitat-
ing adoption, refactoring, and extension of the code. New users are confident that
they have a working installation (or can tell us what does not work on their archi-
tectures) and are capable of reproducing our published scientific results. Developers
refactoring the code for improved organization, performance, or readability can rely
on the application tests for regression testing, to ensure that their changes have not
incidentally broken anything. Perhaps most importantly, new solver methods and
their implementations can be verified against known solutions with the application
tests. This facilitates and encourages the development of new ideas within the PyClaw
framework.

6.2. Hosted distributed version control. Our use of git (http://git-scm.
com/), a modern, distributed version control system, provides many benefits. Devel-
opment need not be synchronized through a master server, which makes it easier to
incorporate subprojects from developers loosely attached to the core team. Manage-
ment of releases and bugfix updates has been greatly simplified. However, perhaps
the greatest beneficiary is the user. Users do not have to wait for PyClaw releases in
order to retrieve bugfixes for particular machines or improvements which are under
active development; they need only update to a given changeset. Moreover, a user
can easily switch between an approved release and experimental code for comparison
with a single version control command. This allows the user a much finer-grained
manipulation of versioning than was previously possible.

There are many excellent open source distributed version control hosting sites, in-
cluding Bitbucket (http://www.bitbucket.org) and GitHub (http://www.github.org),
which provide a range a services to both developers and community users. PyClaw
leverages the services provided at GitHub, which includes wiki webpages for user com-
munication, as well as a bug reporting and tracking infrastructure integrated with the
hosted version control repository. We have separately engaged the use of Google
Groups to provide a mailing list for the PyClaw user and developer community.

6.3. Documentation. PyClaw is provided with a range of documentation suit-
able for the variety of users interacting with the software. While this paper provides
a high-level overview of the capabilities of the code and its application, it is our ex-
perience from using other projects that the best software documentation includes a
separate tutorial and user’s guide with a class reference section. The tutorial and
user’s guide are maintained in the ReStructured Text format, from which they can
be translated into HTML, PDF, and several other output formats using, for instance,
Sphinx (http://sphinx.pocoo.org/). The PyClaw code itself is documented inline us-
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ing Python’s docstring conventions, allowing us to automatically generate class and
module reference sections for our documentation.

7. Applications. The numerical algorithms made accessible in PyClaw, em-
powered by parallelization, are capable of modeling challenging wave propagation
phenomena. In this section, we provide three example applications. They are not
intended to break new scientific ground, but rather to demonstrate the versatility of
the algorithms accessible through PyClaw, and (in the third application) the power
of PetClaw as a scalable parallel solver.

7.1. Shallow water flow on the sphere. Classical shallow water equations on
a sphere are an approximation of the flow on the earth’s surface. They are of interest
because they capture most of the flow’s features of a thin layer of fluid tangent to the
surface of the sphere. Therefore, they are often used by meteorologists, climatologists,
and geophysicists to model both atmosphere and oceans.

In 3D Cartesian coordinates, using h and u = (u, v, w)T to define the height
and the fluid velocity vector, the shallow water equations are of the form (2.1), with

q = (h, hu, hv, hw)T and

(7.1) f (q) =





hu hv hw
hu2 + 1

2gh huv huw
huv hv2 + 1

2gh hvw
huw hvw hw2 + 1

2gh



 ,

where g is the gravitational acceleration. The source term s (q,x) includes the Coriolis
force and an additional term that ensures that the velocity is tangent to the sphere:

(7.2) s (q,x) = −2Ω

a
z (x× hu) +

(
x ·

(
∇ · f̃

))
x.

Here Ω and a are the rotation rate and the radius of the earth, respectively. In (7.2),
f̃ is the part of the flux matrix associated with the momentum equations [2].

In this framework, we consider the numerical solution of the zonal wave number 4
Rossby–Haurwitz problem [30]. Rossby–Haurwitz waves are steadily propagating ini-
tial conditions of the nonlinear nondivergent barotropic vorticity equation on a rotat-
ing sphere [7]. Although they do not represent exact steady solutions of the shallow
water equations, they are expected to evolve in a similar way [29]. For this reason
Rossby–Haurwitz waves have also been used to test shallow water numerical models
and are among the standard shallow water model test cases proposed by Williamson
et al. [30].

The problem consists of a divergence-free initial velocity field that rotates about
the z-axis without significantly changing form on short time scales (dynamical weak
instabilities). On longer time scales (50–100 days) the instabilities’ effects lead to the
breakdown of the wave structure. Previous studies have shown that the time at which
the solution symmetry breaks depends strongly on the numerical truncation error of
the scheme [29]. Because of this the Rossby–Haurwitz problem is frequently used to
assess the accuracy of a numerical algorithm for the solution of the shallow water
equations on a rotating sphere.

The 3D shallow water equations are solved on the logically rectangular grid intro-
duced in [2], using the same approach employed there, namely the classic Clawpack
method with Strang splitting for the source term [28]. Simulations have been per-
formed on four grids with 100×50, 200×100, 400×200, and 800×400 cells. Table 7.1
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Table 7.1
Time at which the symmetry of the Rossby–Haurwitz wave breaks down.

Grid Breakdown
100 × 50 -
200× 100 ≈ 34 d
400× 200 ≈ 45 d
800× 400 ≈ 46 d

(a) 0 days. (b) 38 days.

(c) 45 days. (d) 48 days.

Fig. 7.1. Water height of the zonal wave number 4 Rossby–Haurwitz problem at different times;
grid with 400× 200 cells. Contour interval 120 m.

lists the breakdown time. With the coarsest mesh, the diffusive part of the numerical
error suppresses the instability completely (cf. [29]). The finer grid results confirm
that the time at which the initial velocity loses its symmetry is sensitive to the nu-
merical error.

Figure 7.1 shows the contour line of the water height at days 0 (initial solution),
38, 45, and 48 for the grid with 400 × 200 cells. These plots show qualitatively the
evolution of the instability.



PYCLAW: TOOLS FOR WAVE PROPAGATION C225

7.2. Shock-bubble interaction. The Euler equations for a compressible, in-
viscid fluid with cylindrical symmetry can be written as

(7.3)

ρt + (ρu)z + (ρv)r = −ρv

r
,

(ρu)t + (ρu2 + p)z + (ρuv)r = −ρuv

r
,

(ρv)t + (ρuv)z + (ρv2 + p)r = −ρv2

r
,

(ρE)t + ((ρE + p)u)z + ((ρE + p)v)r = − (ρE + p)v

r
.

Here the z-coordinate represents distance along the axis of symmetry, while the r-
coordinate measures distance away from the axis of symmetry. The quantities ρ, E,
and p represent density, total energy, and pressure, respectively, while u and v are the
z- and r-components of velocity.

We consider an ideal gas with γ = 1.4 in the cylindrical domain [0, 2] × [0, 0.5].
The problem consists of a planar shock traveling in the z-direction that impacts a
spherical bubble of lower-density fluid. In front of the shock, u = v = 0 and ρ = p = 1
except inside the bubble, where p = 1, ρ = 0.1. Behind the shock, p = 5, ρ ≈ 2.82,
v ≈ 1.61, and these conditions are also imposed at the left edge of the domain. In
addition to (7.3), we solve a simple advection equation for a tracer that is initially
set to unity in the bubble and zero elsewhere in order to visualize where the fluid
interior to the bubble is transported. Reflecting boundary conditions are imposed at
the bottom of the domain, while outflow conditions are imposed at the top and right
boundaries.

Since the edge of the bubble is curved, it does not align with the Cartesian grid.
Thus, in the cells that are partly inside and partly outside the bubble, the initial
condition used is a weighted average of the different solution values, based on the
fraction of the cell that is inside. This fraction is computed by adaptive quadrature
using the scipy.integrate.quad package.

Figure 7.2 shows the initial condition and results of this problem, using a 1280×
320 grid and the unsplit classic Clawpack algorithm with full transverse corrections.
The bubble is observed to transform into a “smoke ring.” Considerably more detailed
structure is evident in this simulation compared to lower-resolution adaptively refined
results from AMRClaw that are published at http://depts.washington.edu/clawpack/
clawpack-4.3/applications/euler/2d/shockbubble/amr/www/index.html. Figure 7.3
shows a close-up of the smoke ring solution obtained with the classic Clawpack al-
gorithm, as well as solutions obtained using the SharpClaw algorithm with fifth-
(WENO5) and seventh-order (WENO7) reconstructions. All runs were performed on
a 1280× 320 grid with a maximum CFL number of 0.8. Although the overall features
of the solutions are similar, more fine structure is apparent in the SharpClaw results.
For instance, several vortices can be seen to the left of the smoke ring in the WENO7
run that are not resolved in the classic run.

7.3. Cylindrical solitary waves in a periodic medium. The problem con-
sidered in this section is taken from [24]. It involves the propagation of nonlinear
waves in a 2D crystal, leading to the formation of solitary radial waves or “rings.”
For this purpose, we consider the 2D p-system with spatially varying coefficients as a
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(a) Initial tracer showing location of low-density bubble.

(b) Tracer showing location of bubble material after shock impact.

(c) Schlieren plot of density.

Fig. 7.2. Results of shock-bubble interaction computation, showing the transformation of the
initially spherical bubble into a “smoke ring” after it is impacted by a shock wave.

model for elastic waves:

(7.4)

εt − ux − vy = 0,

ρ(x, y)ut − σ(ε, x, y)x = 0,

ρ(x, y)vt − σ(ε, x, y)y = 0.

Here ε represents the strain, u and v are the velocities in x and y, respectively, ρ(x, y)
is the spatially varying material density, and σ(ε, x, y) is the stress. The system (7.4)
is closed by introducing a nonlinear constitutive relation σ(ε, x, y). Similar to [17], we
take

(7.5) σ(ε, x, y) = exp(K(x, y)ε) + 1,
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(a) Classic Clawpack solution.

(b) SharpClaw solution using WENO5 recon-
struction.

(c) SharpClaw solution using WENO7 recon-
struction.

Fig. 7.3. Schlieren plots of density, zoomed in on the smoke ring. All solutions are computed
on a 1280 × 320 grid.

where K(x, y) is the spatially varying bulk modulus.
The medium, a small part of which is shown in Figure 7.4(a), is in a checkerboard

pattern with alternating squares of two different materials:

(7.6) (K(x, y), ρ(x, y)) =






(1, 1) if

(
x− %x& − 1

2

)(
y − %y& − 1

2

)
< 0,

(5, 5) if

(
x− %x& − 1

2

)(
y − %y& − 1

2

)
> 0.

The problem is quite challenging for multiple reasons. First, the flux is spatially
varying and even discontinuous—meaning that the solution variables (strain and mo-
mentum) are also discontinuous. Furthermore, these discontinuities include corner
singularities. Finally, and owing in part to these discontinuities, it is necessary to use
a large number of cells per material period (! 100) in order to get even qualitatively
accurate results. As we are interested in a phenomenon that arises only after waves
pass through many (> 100) material periods, this leads to a very high computational
cost.

The problem is solved using the SharpClaw algorithm with fifth-order WENO re-
construction. As explained in section 2.1, the implementation in SharpClaw is based
on solving normal Riemann problems at the grid interfaces; see [25] for a detailed ex-
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(a) Detail of checkerboard medium. (b) Detail of initial stress.

Fig. 7.4. The medium and initial conditions (both shown zoomed-in) for the cylindrical solitary
wave problem.

(a) Solitary wave train (stress shown). (b) 1D slices of the stress. Solid black line: 45◦;
dashed red line: 0◦.

Fig. 7.5. Solution of the p-system (7.4) in a checkerboard medium, showing 2D cylindrical
solitary wave formation.

planation of the approximate Riemann solvers employed and for a much more detailed
study of this problem.

A close-up view of the initial stress is shown in Figure 7.4(b). The stress is a
Gaussian pulse with an amplitude of 5 and a variance in x and y of 5, centered at
the origin. The velocity is initially zero. The problem is symmetric with respect
to reflection about the x- and y- axes, so the computational domain is restricted to
the positive quadrant and reflecting boundary conditions are imposed at the left and
bottom boundaries. Outflow (zero-order extrapolation) conditions are imposed at the
top and right boundaries. In units of the medium periodi, the domain considered
is 200 × 200, and the grid spacing is ∆x = ∆y = 1/240. Hence the full simulation
involves 6.8×109 unknowns. It was run on 16,384 cores of the Shaheen supercomputer
at KAUST over a period of about 3.2 days.

The formation of solitary wave rings is seen clearly in Figure 7.5(a), which depicts
the stress at t = 200. The structure of these waves is shown in Figure 7.5(b), which
displays slices of the stress at 45◦ (solid line) and 0◦ (dashed line) with respect to the
x-axis.
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8. Discussion and future plans. This work demonstrates that the use of
Python in combination with existing Fortran and C codes allows the production of
scientific software that is accessible, extensible, and efficient. The serial performance
loss is relatively small and is more than compensated for even on a typical laptop
by the ability to run in parallel without any additional effort. Combining scalable
parallelism with the algorithms of Clawpack and SharpClaw yields a potent tool for
exploring novel wave phenomena.

We are in the process of extending PyClaw to include 3D wave propagation and
implicit time stepping. Both of these are straightforward steps since the PyClaw
framework was written with such developments in mind and the related software
packages (Clawpack and PETSc) already support these features. Preliminary imple-
mentations are under testing.

The use of Python in scientific computing has many potential benefits [23]. The
Python packages numpy, scipy, and matplotlib offer essential numerical tools with
interfaces familiar to users of MATLAB (the lingua franca of numerical methods) in a
general-purpose programming language. An increasing number of important libraries
(like PETSc and Trilinos) now have Python bindings, making it relatively easy to add
powerful capabilities like massively scalable parallelism to Python codes. As discussed
in section 6, the Python community promotes a range of positive code development
practices that are not common in scientific teams but are often picked up by those
who begin to work in Python [6].

While the existence of multiple scientific codes for solving the same problems is
healthy, it is widely recognized that increased code sharing and reuse would bene-
fit the numerical analysis and scientific computing communities. Closer integration
of code developed by different groups would not only allow researchers to be more
productive (by reducing duplication of effort) but would also allow useful algorithmic
improvements to be more rapidly distinguished from insignificant ones by simplifying
the task of comparing them. In our experience, the adoption of Python as a high-level
scientific coding language dramatically increases opportunities for code sharing and
reuse. Indeed, the results described in this paper consist largely of combining a few
powerful existing pieces of scientific software.
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